02 January 2019 By An7ar35

Bitmap In The Terminal Using Braille Characters
Ounn200 a3

Although not a new idea, using braille characters for the purpose of displaying bitmap is a very
interesting and fun thing to look into.

A braille character is essentially a 2x4 pixel block:

A blank character: Some dots on: .: All dots on:

If we add blocks together we can create a pixel-map and thus, do pixel graphics on anything that

supports UTF-8 braille character output (wide character support): 33 32

L]
L]

Braille character encoding

The Unicode standard on braille characters (range from U+2800 to U+28FF) makes it very easy to
produce any dotted patterns on a braille character with just simple additions.

A braille character is made up of 8 dots (2x4) and each are assigned I E—

a hexadecimal value (see right). A blank braille character’s base 01 08
hexadecimal value is 2800;6. If we want to turn on dots in a character 02 | 10

we just need to add the inidvidual dot value to the base value.

e.g.: 280016 + 116 = 2801, which produces: . 04 1 20

To turn on more than one dot we just continue adding their values. 40 | 80

e.g.: 280016 + 416 + 2016 + 8016 = 28 A415 Which produces: . Hexadecimal dot values
Bitmaps

Bitmaps can be constructed out of character blocks with sizes of (height x 4) x (width x 2) pixels.

For ease of use and clearer code, the braille dot values and base value are stored in an array and
variable respectively:

unsigned =0 ;
unsigned [4]12] = {
{0

{0
{0
{0

A 2-dimensional array-like data-structure of hexadecimal values can be used for storing the bitmap
(C++’'s std: :vector<> for example):

https://an7ar35.bitbucket.io/
https://www.unicode.org/charts/PDF/U2800.pdf

auto char_map = std::vector<std::vector<unsigned>>(

char_height,
std :: vector<unsigned>(char_width, BRAILLE_BLANK)

)

A pixel setting method is needed to set the dots in the bitmap. From the (z, y) pixel given, the character
block and its pixel must be deduced. To do that a simple division is used for the block and the modulo
operator (%) for the block pixel.

Then the pixel’s dot value within the block is added to the current block value:

void setPixel(int x, int y, std::vector<std::vector<unsigned>> &char_map) {
int chars. x = x / 2;
int pixel_x = x % 2;
int chars.y =y / 4;
int pixel_y = vy % 4;

char_map[chars_y][chars_x] += BRAILLE_DOT_VALUES[pixel_y][pixel_x 1;

With a little more code a simple working bit-mapper can be created. All is needed to print the
hexadecimal values as UTF-8 characters is to set the locale prior to casting and sending the characters
to the wide-character output stream.

Links & References

* DRAWILLE
» JP’s Blog: Braille unicode pixelation

* Unicode Standard: Braille Patterns (pdf)

https://github.com/asciimoo/drawille/
https://blog.jverkamp.com/2014/05/30/braille-unicode-pixelation/
https://www.unicode.org/charts/PDF/U2800.pdf

