
Bitmap In The Terminal Using Braille Characters

02 January 2019 By An7ar35

Although not a new idea, using braille characters for the purpose of displaying bitmap is a very

interesting and fun thing to look into.

A braille character is essentially a 2x4 pixel block:

A blank character:
.
.
.

.

.

.
. .

Some dots on:
.
.
.

.

.

.
. .

r rrr All dots on:
.
.
.

.

.

.
. .

rrr rrrr r
If we add blocks together we can create a pixel-map and thus, do pixel graphics on anything that

supports UTF-8 braille character output (wide character support):
.
.
.

.

.

.
. .

rr rr .
.
.

.

.

.
. .

rr rr .
.
.

.

.

.
. .

rrr rrr
Braille character encoding

The Unicode standard on braille characters (range from U+2800 to U+28FF) makes it very easy to

produce any dotted patterns on a braille character with just simple additions.

A braille character is made up of 8 dots (2x4) and each are assigned

a hexadecimal value (see right). A blank braille character’s base

hexadecimal value is 280016. If we want to turn on dots in a character

we just need to add the inidvidual dot value to the base value.

e.g.: 280016 + 116 = 280116 which produces:
.
.
.

.

.

.
. .

r
To turn on more than one dot we just continue adding their values.

e.g.: 280016 + 416 + 2016 + 8016 = 28A416 which produces:
.
.
.

.

.

.
. .
r rr

01

02

04

40

08

10

20

80

Hexadecimal dot values

Bitmaps

Bitmaps can be constructed out of character blocks with sizes of (height× 4)× (width× 2) pixels.

For ease of use and clearer code, the braille dot values and base value are stored in an array and

variable respectively:

1 unsigned BRAILLE_BLANK = 0x2800 ;

2 unsigned BRAILLE_DOT_VALUES[4][2] = {

3 { 0x01 , 0x08 } ,

4 { 0x02 , 0x10 } ,

5 { 0x04 , 0x20 } ,

6 { 0x40 , 0x80 }

7 } ;

A 2-dimensional array-like data-structure of hexadecimal values can be used for storing the bitmap

(C++’s std::vector<> for example):

1

https://an7ar35.bitbucket.io/
https://www.unicode.org/charts/PDF/U2800.pdf

1 auto char_map = std : : vector<std : : vector<unsigned>>(

2 char_height ,

3 std : : vector<unsigned>(char_width , BRAILLE_BLANK)

4) ;

A pixel settingmethod is needed to set the dots in the bitmap. From the (x, y) pixel given, the character

block and its pixel must be deduced. To do that a simple division is used for the block and the modulo

operator (%) for the block pixel.

Then the pixel’s dot value within the block is added to the current block value:

1 void se tP i x e l (i n t x , i n t y , std : : vector<std : : vector<unsigned>> &char_map) {

2 i n t chars_x = x / 2;

3 i n t p i xe l _x = x % 2;

4 i n t chars_y = y / 4;

5 i n t p i xe l _y = y % 4;

6

7 char_map[chars_y] [chars_x] += BRAILLE_DOT_VALUES[p i xe l _y] [p i xe l _x] ;

8 }

With a little more code a simple working bit-mapper can be created. All is needed to print the

hexadecimal values as UTF-8 characters is to set the locale prior to casting and sending the characters

to the wide-character output stream.

Links & References

• DRAWILLE

• JP’s Blog: Braille unicode pixelation

• Unicode Standard: Braille Patterns (pdf)

2

https://github.com/asciimoo/drawille/
https://blog.jverkamp.com/2014/05/30/braille-unicode-pixelation/
https://www.unicode.org/charts/PDF/U2800.pdf

