
Creating a Plot Graph with Braille Characters

January 2019 By An7ar35

Contents

List of Algorithms 1

1 Introduction 2

2 Graph Plotting 3

2.1 Scale and Aspect Ratio . 3

2.2 Axes and Ticks . 4

2.2.1 Axes Centre . 4

2.2.2 Axes Ticks . 4

2.3 Scaling Data Points . 5

2.3.1 Generic Point scaling . 5

2.3.2 Amortised Point scaling . 6

3 Labelling 7

3.1 Pre-labelling concerns . 7

3.2 X-Axis tick labelling . 8

3.3 Y-Axis tick labelling . 10

List of Algorithms

1 Fixed aspect-ratio scale . 3

2 Tick pixel spacing . 5

3 Generic point scaling . 5

4 Tick-amortised point scaling . 6

5 Generic label size calculation . 7

6 X-Axis character separation count . 8

7 X-Axis tick skipping . 8

8 X-Axis tick culling . 9

9 X-Axis label writing . 10

1

https://an7ar35.bitbucket.io/

1 Introduction

Prerequisite: Creating bitmaps using braille characters

Since pixelated graphics can be created with the help of Unicode braille characters, why not make

graphs?

Figure 1: Tasty terminal graph...

This document details the more interesting aspects and problems encountered during development

of the EADlib eadlib::cli::BraillePlot C++ library component.

2

https://an7ar35.bitbucket.io/pdf/articles/cs_bite/2019-01%20-%20Bitmap%20in%20the%20terminal%20using%20braille%20characters.pdf
https://bitbucket.org/An7ar35/eadlib

2 Graph Plotting

2.1 Scale and Aspect Ratio

In order to calculate scaling, the drawing area (or canvas) size in pixels and themaximum (x, y) lengths

used in the original data point set are required.

The drawing (x, y) sizes can be simply calculated by multiplying the

number of braille characters in a line and the number of lines by their

pixel capacities: canvasx = W × 2 and canvasy = H × 4

.

.

.

.

.

.
. .

rrr rrrr r
2 by 4 pixel block

x

y

max

min

The graph size can be obtained by adding the largest point value of

the axis with its absolute (abs()) smallest: sizex = maxx + |minx| and
sizey = maxy + |miny|. With that we have the max length required on

both x and y.

Calculating the individual X and Y ratios is then trivial:

ratiox =
canvasx
sizex

ratioy =
canvasy
sizey

The challenge here is when the aspect ratio must be maintained when scaling. This means that

whether the graph is made larger or smaller, it must be done uniformly on both axes.

In the case where the canvas is larger than the

graph size on both axes then, in order to maintain

the aspect ratio, the up-scaling is bound to the

smallest ratio. If we didn’t, the graph would end

up being bigger on one of the axis than the canvas

allows [lines 1-2].

When the graph is larger on both axes than the

canvas downscaling is bound to the largest ratio

to, again, make sure that the totality of the graph

fits inside the given canvas [lines 3-4].

Finally, when only one axis of the graph actually fits

within the canvas, we downscale based on the axis

that doesn’t [lines 5-9].

The final line [10] just applies the scaling to the

second axis to maintain the fixed aspect ratio.

Algorithm 1: Fixed aspect-ratio scale

1 if ratiox ≥ 0 AND ratioy ≥ 0 then

2 scalex ← min(ratiox, ratioy);

3 else if ratiox < 0 AND ratioy < 0 then

4 scalex ← max(ratiox, ratioy);

5 else

6 if ratiox < 0 then

7 scalex ← ratiox;

8 else

9 scalex ← ratioy;

10 scaley ← scalex;

3

2.2 Axes and Ticks

2.2.1 Axes Centre

Since the canvas’ pixel coordinates start from the top left corner at (0, 0), the graph axes and data

points need to be shifted accordingly. Before that, the axes centre on the pixel grid must be calculated.

centrex =

(
|minx|
sizex

× (canvasx − 1

)
+ 1 centrey =

(
maxy

sizey
× (canvasy − 1)

)
+ 1

The equations (above) determine in effect how far

the (0, 0) graph point is from the (0, 0) pixel point.

This is why the ratio (−x,+y) area of the graph is

calculated and then multiplied by the canvas (x, y)

pixel sizes. The −1 is to account for the pixel lines

that will be used by the graph’s drawn axes.

The 1 added at the end is for the pixel wide margin

around the canvas which is placed to allow for

rounding errors when the data points are scaled.

In the event a data point is near the edge of the

graph box, a rounding to the nearest pixel location

might lead to an out-of-range access to the bitmap

data-structure (e.g.: (19, 80) on a 40×80 pixels

canvas).

x

y

pixelx

pixely

2.2.2 Axes Ticks

For tick indicators in the axes some accommodations must be made as

the spacing between individual ticks will vary whether the graph has a

fixed aspect ratio or not.

The value of intervals needs to be deduced as well as limiting the total

number of ticks to be draw on the axes (tick count < pixel length of axis).

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

rrrr .
.
.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

rrrr .
.
.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

r r .
.
.

.

.

.
. .

r r .
.
.

.

.

.
. .

r rrrr .
.
.

.

.

.
. .

r r .
.
.

.

.

.
. .

r r
.
.
.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

rrrr .
.
.

.

.

.
. .

.

.

.

.

.

.
. .

Pixelated centre

4

For some breathing space, the algorithm

attempts to have an absolute maximum of 1

tick for every 4 pixels. i.e. every 2 character

block on the X-axis and 1 character block on

the Y-axis.

The Y-axis restriction is also relevant for

labelling as there can only be one label

maximum on each lines.

Starting from the given interval values at the

start, we check whether or not they would

satisfy the above condition. If not they are

multiplied by 2 until the condition is met. e.g.:

an interval value of 5.0 that has a calculated

tick spacing of 3 pixels would end up as 10.0

at 6 pixel intervals.

For fixed-ratio scaling, the smallest of the

(x, y) tick spacingwould be used on both axes.

Algorithm 2: Tick pixel spacing

Input: canvas_size: Canvas XY sizes

Input: graph_size: Graph XY sizes

Input: interval_value: Tentative interval values

Output: pixel_spacing: Tick pixel spacings

1 tick_countx ←
graph_sizex

interval_valuex
;

2 while tick_countx >
⌊canvas_sizex

4

⌋
do

3 interval_valuex ← interval_valuex × 2;

4 tick_countx ←
graph_sizex

interval_valuex
;

5 tick_county ←
graph_sizey

interval_valuey
;

6 while tick_countx >
⌊canvas_sizex

4

⌋
do

7 interval_valuey ← interval_valuey × 2;

8 tick_county ←
graph_sizey

interval_valuey
;

9 pixel_spacingx ←
⌊canvas_sizex

tick_countx

⌋
;

10 pixel_spacingy ←
⌊canvas_sizey

tick_county

⌋
;

2.3 Scaling Data Points

2.3.1 Generic Point scaling

For simple scaling each data points is just

multiplied by the scale factor and then shifted

by the position of the axes pixel centre

coordinates on the canvas.

Algorithm 3: Generic point scaling

Input: point: Data point (x, y)

Input: axis_center: Axis center on canvas

Input: scale: Scale

Output: p: Scaled point

1 p←point;

2 px ←px × scalex;

3 py ←py × scaley;

4 if px ≥ 0 then

5 px ← axis_centerx + px;

6 else

7 px ← axis_centerx − |px|;

8 if py ≥ 0 then

9 py ← axis_centery − py;

10 else

11 py ← axis_centery + |py|;

5

2.3.2 Amortised Point scaling

With ticks present, simple scaling leads to

inaccuracies in the display of the points in

respect to the tick values. This is due to:

• rounding errors introduced when casting

points to the nearest pixel and

• possible shifts introduced by making the

ticks equidistant from each other.

To accurately place the points in respect to

the tick values, tick-based amortisation is

used.

In short; the nearest tick below (positive) or

above (negative) the data point value is first

worked out on both x and y (lines 1-5, 7-11)

then the extra pixels left to reach the data

point (lines 7, 12).

The number of ticks is multiplied by the tick

pixel interval then the extra pixels are added

to get the relative pixel position of the data

point (lines 13-14).

Finally the (x, y) of the amortised point is

shifted by the coordinates of the axis pixel

centre to get its final pixel position on the

drawing canvas (lines 15-22).

Algorithm 4: Tick-amortised point scaling

Input: interval_value: Tentative interval values

Input: axis_center: Axis center on canvas

Input: pixel_spacing: Tick pixel spacings

Input: point: Data point (x, y)

Output: p: Scaled point

1 tick_countx ←
pointx

interval_valuex
;

2 whole_ticksx ← tick_countx > 0

3 ? btick_countxc
4 : dtick_countxe;
5 tick_pixelsx ←

(tick_countx − whole_ticksx)× pixel_spacingx;

6 tick_county ←
pointy

interval_valuey
;

7 whole_ticksy ← tick_county > 0

8 ? btick_countyc
9 : dtick_countye;

10 tick_pixelsy ←
(tick_county − whole_ticksy)× pixel_spacingy;

11 pixel_countx ←
(whole_ticksx × pixel_spacingx) + tick_pixelsx;

12 pixel_county ←
(whole_ticksy × pixel_spacingy) + tick_pixelsy;

13 if pixel_countx ≥ 0 then

14 px ← axis_centerx + pixel_countx;

15 else

16 px ← axis_centerx − |pixel_countx|;

17 if pixel_county ≥ 0 then

18 py ← axis_centery − pixel_county;

19 else

20 py ← axis_centery + |pixel_county|;

6

3 Labelling

3.1 Pre-labelling concerns

The list of ticks and their corresponding axis coordinate need to be sorted by ascending order on the

canvas axes (0..N): left-to-right for the X-axis and top-to-bottom for the Y-axis. This helps on placing

ticks consecutively and avoid jumping back and forth whilst iterating the labelled canvas.

Globally, there are 3 pieces of information needed to uniformly place labels on any given axis:

1. maximum characteristic size in all tick values (line 5),

2. mantissa size of the given tick interval value (line 4),

3. total character length of the longest tick value (lines 6-9).

Algorithm 5: Generic label size calculation

Input: interval_value: Tick interval value

Input: max_neg_value: Maximum negative tick value

Input: max_pos_value: Maximum positive tick value

Output: characteristic: Reserved character length for characteristic

Output: mantissa: Reserved character length for mantissa

Output: size: Total reserved length for label

1 max_neg_c← characteristicLength(max_neg_value);

2 max_pos_c← characteristicLength(max_pos_value);

3 interval_c← characteristicLength(interval_value);

4 mantissa← mantissaLength(interval_value);

5 characteristic← max(max(max_neg_c, max_pos_c), interval_c));

6 size← (mantissa > 0 ? characteristic+mantissa+ 1 : characteristic);

7

3.2 X-Axis tick labelling

.

.

.

.

.

.
. .
r r

-

.

.

.

.

.

.
. .
r r

5

.

.

.

.

.

.
. .
r rrr .

.

.

.

.

.
. .
r r .

.

.

.

.

.
. .
r r .

.

.

.

.

.
. .
r r

0

.

.

.

.

.

.
. .
r rrrr .

.

.

.

.

.
. .
r r .

.

.

.

.

.
. .
r r .

.

.

.

.

.
. .
r r

5

.

.

.

.

.

.
. .
r rrr .

.

.

.

.

.
. .
r r .

.

.

.

.

.
. .
r r

1

.

.

.

.

.

.
. .
r r

0

.

.

.

.

.

.
. .
r rrr .

.

.

.

.

.
. .
r r

The labelling on this axis is the least trivial. First, any ticks whose label may overlap of touch must be

removed from consideration in a distributed manner. e.g.: if tick ’2.0’ overlaps with ’2.5’ then every

other ticks must be dropped to maintain symmetry.

In the event of odd tick intervals the space

between ticks is not uniform.

0

.

.

.

.

.

.
. .

r rrr .
.
.

.

.

.
. .

r r .
.
.

.

.

.
. .

r r
1

.

.

.

.

.

.
. .

rrr r .
.
.

.

.

.
. .

r r
2

.

.

.

.

.

.
. .

r rrr .
.
.

.

.

.
. .

r r
e.g.: (above) The interval is 5 pixels but

the number of characters before the next

tick differ at 0 and 1 with 3 and 2 blocks

respectively.

Algorithm 6: X-Axis character separation count

Input: tick_interval: Pixel interval for X-axis ticks

Input: axis_center: Axes pixel centre

Output: char_count: Worst number of characters

between and inclusive of 2 ticks

1 char_count← tick_interval

2
;

2 if tick_interval mod 2 > 0 and axis_centerx mod 2 ≡ 0

then

3 char_count← char_count+ 1;

With this in mind; we must find the worst spacing possible (see #6 above) to base the tick skipping

algorithm (#7) on to make sure that no labels touch each over or overlap.

To get the number of ticks to skip between

the ones to keep, the number of character

block needed is checked against the label

size calculated in the ”Generic label size

calculation” algorithm (#5) and the skip

count is incremented on each failed iteration

check (see right).

Algorithm 7: X-Axis tick skipping

Input: size: generic label size

Output: skip_count: Number of ticks to skip between

those to keep

1 skip_count← 0;

2 char_blocks← char_spacing;

3 while size > char_blocks− 2 do

4 char_blocks← char_blocks× 2;

5 skip_count← skip_count+ 1;

8

Instead of the remove-as-we-go approach a

pre-culling is much a easier to implement for

maintaining the labelling symmetry.

The first step (lines 1-5) gets us to the ’0’ tick

on the axis using a stack to push any other

ticks that are prior to it (i.e.: negative valued

ticks since the list is sorted based on the axis

coordinates).

From there we iterate to the end of the list

whilst removing on-the-fly (lines 6-13) any

ticks that overlap based on the skip_count

calculated in the ”X-Axis tick skipping”

algorithm (#7).

The same is done in reverse from the ’0’ tick

by using the stored negative ticks on the

negative_values stack.

At the end, the only ticks remaining in the list

are those that do not overlap both in their

positive and negative versions thus keeping

labelling symmetrical.

Algorithm 8: X-Axis tick culling

Input: tick_list: List of ticks comprised of their {value

and coordinate}

Output: skip_count: Number of ticks to skip between

those to keep

1 tick_iterator← tick_list.begin();

2 negative_values← Stack();

3 while tick_iterator 6= tick_list.end() and

tick_iterator.value < 0 do

4 negative_values.push(tick_iterator);

5 tick_iterator++;

6 erase_counter← 0;

7 while tick_iterator 6= tick_list.end() do

8 if skip_count > 0 and erase_counter < skip_count

then

9 tick_iterator← tick_list.erase(tick_iterator);

10 erase_counter← erase_counter + 1;

11 else

12 erase_counter← 0;

13 tick_iterator++;

14 erase_counter← 1;

15 while !negative_values.empty() do

16 if skip_count > 0 and erase_counter < skip_count

then

17 tick_list.erase(negative_values.top());

18 erase_counter← erase_counter + 1;

19 else

20 erase_counter← 0;

21 negative_values.pop();

9

Finally, the labels are written to the X-Axis label row. The ”X-Axis label writing” algorithm (#9) is

used on each consecutive ticks in the list. Each character block is added one-by-one whether a space

(0x20) or a character in a tick value label.

Algorithm 9: X-Axis label writing

Input: tick: Tick with value and coordinate

Input: label_mantissa: Global mantissa character length for the X-Axis

Input: row: Labelling row

1 characteristic← lengthInt(tick.value);

2 mantissa← min(lengthFrac(tick.value), label_mantissa);

3 str_size← (mantissa > 0 ? characteristic+mantissa+ 1 : characteristic);

4 str_offset←
(
str_size > 1 ?

(
str_size mod 2 > 0 ?

str_size− 1

2
:
str_size

2

)
: 0

)
;

5 tick_index← tick.coordinatex + 1

2
+ (tick.coordinatex + 1 mod 2?1 : 0);

6 start_index← (str_offset ≥ tick_index ? 0 : tick_index− str_offset− 1);

7 value_str← toString(tick.value);

8 for i← row.size(); i < start_index; i++ do

9 row.add(0x20);

10 for i← 0; i < str_size; i++ do

11 row.add(value.at(i));

3.3 Y-Axis tick labelling

Labelling on the Y-axis is incrementally done based on the order of the tick list (from smallest y position

to largest). As all labels have a predefined default size based on the ”generic label size calculation”

algorithm (#5) which is applied to the axis.

The only interesting aspect is the left-side padding which is

calculated on a per-label basis so that all label values are aligned

horizontally with each other.

Since all labels will have the same mantissa length (if any), the

padding is worked out from the characteristic and its difference in

length with the generic label’s one.

- 1 0
.
.
.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

.

.

.

.

.

.
. .

r rrrr

10

	List of Algorithms
	Introduction
	Graph Plotting
	Scale and Aspect Ratio
	Axes and Ticks
	Axes Centre
	Axes Ticks

	Scaling Data Points
	Generic Point scaling
	Amortised Point scaling

	Labelling
	Pre-labelling concerns
	X-Axis tick labelling
	Y-Axis tick labelling

