RAII in C++

10/10/2019

Contents
1 Definition 2
1.1 Scope-based Resource Management (SBRM) 2
1.2 Heap allocated objects 2
1.2.1 Automatic management (smart pointers) 2
1.2.2 Manual management (raw pointers) 3
2 Some common usage scenarios 3
2.1 Mutexlocks e e e 3
2.2 Files . . . e e e e 4
Appendices 5
A Example: Nested class construction/destruction 5
B Example: Scope-based Resource Management 6
C Example: Managed heap-allocated objects (unique_ptr) 7
D Example: Managed heap-allocated objects (shared_ptr) 8
E Example: RAII with raw pointers e 10

https://an7ar35.bitbucket.io/

1 Definition

Resource Aquisition Is Initialization essentially describes the concept that a resource held by an
object is tied to the lifetime of said object. It is an incredibly useful and powerful concept that allows
automatic cleaning of resources without the need for Garbage Collection (like in Java for example).

During an object’s construction the resources’ are allocated (or acquired) by the constructor and are
held by the object until its destruction stage where they are released in reverse order (see appendix
A for an example).

RAII, with code discipline, helps avoid resource leaks and guaranties exception safety as long as these
resources are acquired & released from stack-allocated objects where their lifetime is well defined.
The stack’s guarantee to unwind, and thus trigger release for the resources, is only held if exceptions
are caught?.

1.1 Scope-based Resource Management (SBRM)

Scope-based Resource Management leverages RAII in the sense that when we exit the scope where
a resource is managed, the resource is released. So, for example, in a function where a smart pointer
is created and used without being returned its destructor will be called when the function is existed.
Scope can also be artificially forced by using brackets {. ..} (see appendix B for an example).

1.2 Heap allocated objects

Any resources on the heap (a.k.a. the free-store) created can live beyond the lifetime of its creator
object so some careis required when dealing with them. Implicit/Explicit deletion must be implemented
and always called when the resource is not required any longer.

1.2.1 Automatic management (smart pointers)

A std::unique_ptr manages the lifetime of the pointed object based on the lifetime of its owner.
Even though pointer ownership can be explicitly transferred, the resources is tied to its pointer (see
appendix C for an example).

Alternatively, in cases where a resource needs to be shared, a std: :shared_ptr) can be used instead.
Release is done by whatever is the last remaining std: :shared_ptr pointing to the resource (see
appendix D for an example). In the case of cyclically referenced objects, weak pointer can be used
along side a shared pointer.

TRaw pointers pose some issues here (see section 1.2).
2Uncaught exceptions will trigger the terminate () function early leaving any resources acquired/allocated in a
unreleased state.

1.2.2 Manual management (raw pointers)

Don't if it can be avoided. Use smart pointers. If there’s no way around using raw pointers then
some manual intervention in order to make sure any resources pointed to are properly released and
avoid leaks will be required. Also ownership should remain clear. Clear and simple code leads to less
headaches down the road.

Keeping the scope of the pointer usage within a container object’s lifetime is advised so that the
object’s destructor can be used to free up the resources pointed to (see appendix E for an example).

2 Some common usage scenarios

2.1 Mutex locks

In multi-threaded development, RAII can be used to control mutex locks where a locked object is
unlocked when the lock itself is destroyed. This makes sense as without a lock something cannot be
locked any-longer! :)

The example taken from cppreference.com shows how to approach RAII mutex locks:

Non-RAII & unsafe mutex locking

std :: mutex m;
void bad() {
m.lock () ;

()

if(teverything_ok())
return;
m.unlock () ;

Here the mutex is acquired (line 4) and released (line 8) but may create a deadlock in the following
scenarios:

1. () throws an exception (line 5),

2. everthing_ok() evaluates to false and triggers an early return from the function (line 6-7).

RAII & safe mutex locking

void good() {
std ::lock_guard<std :: mutex> Ik(m);
f(); released

if('everything_ok())
return;

By using an RAII class (std: :lock_guard<>) that deals with the locking / unlocking at construction
/ destruction it means that the deadlocks present in the previous unsafe example are dealt with.

3

https://en.cppreference.com/w/cpp/language/raii

2.2 Files

RAII can be especially useful when accessing files whether to read from or write to them. A file can
be open on construction of a ‘handling’ object and closed when this object goes out of scope and its
destructor is called. The only thing left is then to deal with any potential exceptions that might be
raised lest corruption occur to the data being written or read.

RAII file access

void write(const std::string& line, const std::string &file_name) {
static std:: mutex mutex;
std :: lock_guard<std :: mutex> lock(mutex); //lock mutex for file access
std :: ofstream file(file_name);

if(file.is_open())

throw std::runtime_error(+ file_name);

file << line << std::endl;

Appendices

The appendices collate minimal code examples of RAII in action

A Example: Nested class construction/destruction

Nested class example

#include <iostream>

class A {
public:
AO A
~A() |

by

class B {
public:
BO |
~B() {

class Container {
public:
Container() { std::cout <<
~Container() { std::cout <<

private:
A a;
B b;
b

int main() {

auto c = Container();

Output:

Class A constructor called.
Class B constructor called.
Container constructor called.
Container destructor called.
Class B destructor called.
Class A destructor called.

B Example: Scope-based Resource Management

Scope based memory management example

#include <iostream>
#include <memory>

class A {
public:
A(int id) : _id(id) { std::cout <<
~A() { std::cout << << _id <<

private:
int _id;

void foo() { //function scope begins
std :: cout << << std::endl;
auto a1l = A(1);
{ //force—scopping
auto a2 = A(2);
b
{ //force—scopping
auto a3 = A(3);
b

std :: cout << << std::endl;

} //function scope ends

int main() {
foo();

Output:

Entering Foo()
Class A #1 constructor called.

Class A #2 constructor called.
Class A #2 destructor called.
Class A #3 constructor called.
Class A #3 destructor called.

Exiting Foo()
Class A #1 destructor called.

C Example: Managed heap-allocated objects (unique_ptr)

Heap objects with shared pointers example 1

#include <iostream>
#include <memory>

class A {

public:
A() { std::cout << << std::endl; };
~A() { std::cout << << std::endl; };

int add(int a, int b) {
return a + b;

b

void foo () {
std::cout << << std::endl;
auto p = std:: make_unique<A>();
std::cout << << p—>add(3, 4) << std::endl;
std :: cout << << std::endl;

Output:

Entering Foo()

Class A constructor called.
3+4 =17

Exiting Foo()

Class A destructor called.

D Example: Managed heap-allocated objects (shared_ptr)

Heap objects with shared pointers example 2

#include <iostream>
#include <memory>

class A {
public:
A(C int id) : _id(id) {
std :: cout <<

s

~AQ() A

std :: cout <<

¥
int getID() const { return _id; };

private:
int _id;
¥

void bar(std::shared_ptr<A> ptr) {
std::cout << << std::endl;
std :: cout << << ptr—>getID() << std::endl;
std::cout << << std::endl;

void foo(std::shared_ptr<A> ptr) {
std :: cout << << std::endl;
auto b = std:: make_shared<A>(2);
bar(ptr);
bar(b);
std :: cout << << std::endl;

main() {

std :: cout << << std::endl;
auto a = std::make_shared<A>(1);

foo(a);

std :: cout << << std::endl;

Output:

Entering main()
Class A #1 constructor called.

Entering Foo()

Class A #2 constructor called.
Entering Bar()

A::getID(): 1

Exiting Bar ()

Entering Bar ()

A::getID(): 2

Exiting Bar()

Exiting Foo()

Class A #2 destructor called.
Exiting main()

Class A #1 destructor called.

E Example: RAII with raw pointers

Heap objects with raw pointers example

#include <iostream>

struct Info {
int _id;
std::string _name;

s

class A {
public:
A(int id, std::string name) : _info_ptr(new Info({ id, name })) {
std::cout << << std::endl;

s

~AQ) A

std::cout << << std::endl;
delete _info_ptr; //free resource

o

void printIinfo() const {
std::cout << << _info_ptr—_id << << _info_ptr—>_name << std::

private:
Info *x _info_ptr;

+

int main() {
int id_count = 0;
auto a = A(25,
a.printinfo ();

Output:

Class A constructor called.
id: 25, name: John
Class A destructor called.

Line 16 releases the memory resource taken by the Info object the pointer is pointing to. If it was
omitted then the memory would still be marked as used but when the A object was destroyed there
would be no way to access and thus free that resource any longer. Therefore there would be a memory

leak.

	Definition
	Scope-based Resource Management (SBRM)
	Heap allocated objects
	Automatic management (smart pointers)
	Manual management (raw pointers)

	Some common usage scenarios
	Mutex locks
	Files

	Appendices
	Example: Nested class construction/destruction
	Example: Scope-based Resource Management
	Example: Managed heap-allocated objects (unique_ptr)
	Example: Managed heap-allocated objects (shared_ptr)
	Example: RAII with raw pointers

