
Basics of the Linux terminal and tools
24/12/2021 By An7ar35

Contents

1 Nomenclature 4

2 Introduction 4

2.1 Getting help . 4

3 Useful Concepts and Tooling 5

3.1 Command history . 5

3.2 Command Redo/Undo/Edit . 5

3.3 Piping (‘|’) . 5

3.4 Chaining (‘&&’) . 6

4 Basic Operations 6

4.1 Files and Directories . 6

4.2 Getting information . 6

4.3 Copying, Moving and Renaming . 7

4.4 Searching . 7

4.5 Comparison . 7

5 Text manipulation 9

5.1 Filters . 9

5.1.1 awk . 9

5.1.2 grep . 10

5.1.3 sed . 10

5.2 Slicing and extracting . 12

5.2.1 head and tail . 12

5.2.2 cut . 12

5.3 Word Count . 13

5.4 Sort . 13

5.5 Concatenate . 13

6 System variables 14

6.1 Syntax . 14

6.2 Environment variables . 14

6.2.1 Persistence . 15

6.3 Shell variables . 15

7 Maths in the terminal 15

7.1 Evaluating expressions (expr) . 16

1

https://an7ar35.bitbucket.io/

7.2 Floating point calculations (bc) . 16

7.3 Prime factors (factor) . 16

7.4 Bash operators . 16

8 Users and Groups 18

8.1 Users . 18

8.2 Groups . 18

8.3 Switch User (a.k.a. Substitute User) . 19

8.4 Running as root (Sudoers) . 19

8.5 File and Directory permission . 19

8.5.1 Type and security descriptor . 20

8.5.2 Changing permissions . 21

8.5.3 Changing ownership . 22

8.5.4 Access Control Lists (ACL) . 22

9 System and resources 22

9.1 Kernel . 22

9.2 Users . 22

9.3 Processes . 23

9.4 Disks . 23

9.5 Network and ports . 23

9.6 Monitoring . 23

10 Networking 23

10.1 Device and local network information . 23

10.2 Remote connectivity and troubleshooting . 24

10.3 Downloading files from the internet . 24

10.4 Secure Shell (SSH) . 25

10.4.1 Connecting to a remote SSH server . 25

10.4.2 Running remote commands/scripts . 26

10.4.3 Copying files . 26

10.4.4 Starting the server daemon . 27

10.4.5 SSH Keys . 27

10.4.6 Secure File Transfer Protocol (SFTP) . 28

11 Backup 28

11.1 Commonly used options . 29

11.2 Local backups . 30

11.3 Remote backups . 31

12 Shell Scripting 32

12.1 The script file . 32

12.2 Bash special parameters . 33

12.3 Exit codes . 33

12.4 Conditional constructs . 34

2

12.5 The test command and its operators . 34

12.5.1 Numeric operators . 34

12.5.2 String operators . 35

12.5.3 File comparison operators . 35

12.5.4 File state operators . 35

12.6 Variables . 36

12.7 Quotation marks and Escape character . 36

12.7.1 Back quotes . 36

12.8 Printing . 37

12.8.1 echo . 37

12.8.2 printf . 37

12.9 User input . 39

12.10 Flow control . 40

12.10.1 if . 40

12.10.2 switch . 40

12.10.3 for . 41

12.10.4 while . 41

12.10.5 until . 41

12.10.6 shift (for positional parameter) . 41

12.11 Functions . 42

12.12 Debugging and Linting . 42

13 Automating tasks 42

13.1 Editing tasks . 43

13.2 Allow/Deny users to schedule tasks . 43

14 Common scenarios 43

14.1 Formatting a USB stick . 44

14.2 What is blocking umount? . 44

14.3 Remove a list of files . 44

14.4 Piping lines from a file to a script . 45

15 Other interesting applications 46

16 Change log 47

Appendices 48

A More monitoring tools . 48

B Linux directory structure . 49

C Linux Access Groups . 50

C.1 User . 50

C.2 System . 51

D Common Linux exit codes . 53

3

1 Nomenclature

All arguments in this document are surrounded with ’ < ’ and ’ > ’ signs to identify them as such. When typing out

the arguments in the terminal make sure to replace the content including the signs with your own appropriate

arguments.

<file name> A file name. e.g.: ’name_of_file.txt’ or ’~/Documents/name_of_file.txt’.

<folder> A directory. e.g.: ’/home/dave1/Documents’ or ’Documents’.

<path> A path to a directory or a file. e.g.: ’/home/dave1/Documents’ and

’/home/dave1/Documents/mydoc.txt’.

<device> A device name. e.g.: ’/dev/sda1’.

<username> A linux username. e.g.: ’bob123’.

<group> A linux group name. e.g.: ’wheel’.

<groups> List of linux group names. e.g.: ’wheel,sudo,audio’.

<address> Network address or name. e.g.: ’192.168.1.1’ or ’www.duckduckgo.com’.

<domain name> Domain name such as ’duckduckgo.com’.

Options can generally be concatenated together when option specific arguments are not required. e.g.: ls -l -s

can be written as ls -ls instead.

2 Introduction

This document outlines everything that one needs to get going in the Linux command line environment (Bash)

and the wonderful tools that for and alongside it. It’s meant to serve both as a reference guide and a general

overview of what could be considered a basic working understanding of Linux from a command line perspective.

With consideration of the above, the command line utilities and their options highlighted here only cover a

section of use cases and, thus, should be considered far from comprehensive. These just serve as a quick

reference to get through some of the most common use cases. To get a full picture of all the options available

for each commands check chapter 2.1 below.

2.1 Getting help

There are a couple of ways to get some indications as to what a command line utility can do and what arguments

(options) can be passed to it. Normally both approach below should work but be aware that some less than

standard command line tools may not have a man page implemented (it’s rare but it happens).

Getting help

$ <command> --help : Getting a brief overview of the available options for a command.

$ man <command> : Internal manual page for the command (use ’q’ to exit).

If things are still confusing don’t underestimate a quick web search to find a solution. The GNU manual page

for core utilities is a good place to start for a full list of the core commands available on Linux.

For all GNU Bash related information check out the official Bash Reference Manual.

4

https://www.gnu.org/software/coreutils/manual/
https://www.gnu.org/software/bash/manual/html_node/index.html#SEC_Contents

3 Useful Concepts and Tooling

3.1 Command history

Bash retains a history (~/.bash_history) of the commands typed inside the user’s home directory. Too see

it in the terminal just type: $ history

Note: The ↑ and ↓ keys can also be used to browse the past command line history line by line.

To avoid adding a command to this history just add a space at the beginning of the line for that command inside

the terminal.

To do a reverse history search of a command use: Ctrl + R Repeating this will cycle through the alternatives

found.

HSTR (optional)

Another option to browse/search through the history is to install HSTR. It’s a supercharged and nicer to

use history lookup replacing the traditional reverse-history search.

3.2 Command Redo/Undo/Edit

cmd details

fc Opens up an editor with the last command entered so that it can be fixed

up.

Ctrl + X then Ctrl + E
Opens up an editor with the last command entered so that it can be fixed

up.

!! Takes the last command in the history.

For example to run the last command typed as root:

$ sudo !!

3.3 Piping (‘|’)

A pipe (|) redirects a program’s output to another program for further processing. For example: getting a list

of all the files in a directory (ls) and then filtering (grep) the resulting output for any entries that have ‘host’

in their names. I.e.:

$ ls | grep 'host'

Multiple application can be chained up as such:

command_1 | command_2 | command_3 ...

For example: getting a list of files that have ’host’ in their name and, out of that result, get only the files that

also have ’name’ in their names:

$ ls | grep 'host' | grep 'name'

Another example: see all messages that include the string ’error’ (grep -i 'error' - case insensitive) produced

5

https://github.com/dvorka/hstr

by linux on startup (dmesg) in a scrollable application (less):

$ dmesg | grep -i 'error' | less

3.4 Chaining (‘&&’)

In order to chain commands so that they execute one after the other the double ampersand && signs can be

used to separate each commands in the sequence.

To note that && only executes if the previous command had an exit status of 0 (i.e.: finished without failing).

For example: show all files in the current directory and then print the message ‘All done!’ afterwards.

$ ls && echo "All done!"

4 Basic Operations

4.1 Files and Directories

cmd opt args details

touch <file name> create blank file

> <file name> create blank file

rm <file name> remove file

rm -r <path> remove all files and folders recursively in path

cd <path> change directory

cd .. go up 1 directory

cd ../.. go up 2 directories

cd / go to root directory

cd ~ go to current user’s home directory

pwd Print the full filename of the current working directory.

pwd -L Print the full Logical filename of the current working directory.

pwd -P Print the full Physical filename of the current working directory.

mkdir <folder> make directory

mkdir -p <folder> make directory and create parent directories as needed

mkdir -m <mode> <folder> make directory and set its permission (octal mode - see 8.5)

rmdir <folder> remove an empty directory

rmdir -p <path> remove an empty directory and empty parent(s) in path

4.2 Getting information

cmd opt details

ls list folders and files in current directory

ls -d lists all directories in current directory

ls -l lists folders and files in current directory in long format

ls -hs lists folders and files in current directory with human readable sizes

dir lists all directories in current directory

6

4.3 Copying, Moving and Renaming

cmd args details

cp <source> <target> copy a folder/file

mv <source> <target> move/rename a folder/file

Example

cp source_path/file_name.txt target_path/file_name.txt

4.4 Searching

The find utility is pretty straight forward but can also be powerful. Note that there are many options available

(see man page) beyond just searching for a file name (e.g.: last modified, last used, size, user/group ownership,

etc...).

cmd opt/args details

find -name <file name> Search for a file name from the current location.

find path -name <file name> Search for a file name from a given location.

Examples

//Search for files with the 'txt' extension from the home directory

find ~ -name *.txt

//Search for files name log from the root directory irrespective of the extension

find / -name log.*

4.5 Comparison

The diff command can compare text based files as well as directories (replace file1 and file2 with folder

paths).

7

cmd opt args details

diff <file1> <file2> Shows differences between 2 text files.

diff -s <file1> <file2> Verifies if the files are identical.

diff -q <file1> <file2> Verifies if the files are not identical.

diff -y <file1> <file2> Show file comparison side-by-side.

diff --suppress-common-lines <file1> <file2> Show only changed/added/deleted lines.

diff -b <file1> <file2> Verifies if the files are identical but ignore

any changes which only change the amount of

white-space (spaces/tabs).

diff -Z <file1> <file2> Verifies if the files are identical but ignore any

trailing white-space.

diff -w <file1> <file2> Verifies if the files are identical but ignore

white-space entirely.

diff -i <file1> <file2> Case-insensitively verifies if the files are identical.

When running diff between two files, the output always describes what

changes would be needed to transform the first into the second so that

both match.

In single column view, the way diff show that is by by giving the line

numbers from the first file, the action character (see right), then the line

numbers from the second file.

e.g.: 1,2c1,2 which means that line 1 through 2 in first file were

changed to line 1 through 2 in the second file.

For directories, the output describes the files and folders differences.

Legend

Single column view:

a add

c change

d delete

< line from first file

> line from second file

--- file separator

Side-by-side view:

| line changed

> line added

< line deleted

8

Example 1: Text files

a.txt

My name is Bart Simpson.

I live in Springfield.

b.txt

My name is Lisa Simpson.

I live in Springfield.

I play the saxophone.

Result of diff a.txt b.txt

1c1

< My name is Bart Simpson.

> My name is Lisa Simpson.

2a3

> I play the saxophone.

So here line 1 in ‘b.txt’ was changed and the ”I play the saxophone.” on line 3 was added from the

perspective of the ‘a.txt’ file.

Note

If you find yourself working on different versions of text-based files you might want to look into a Version

Control System such as GIT or Subversion (SVN).

Other command line tools1

cmd details

colordiff Perl wrapper for diff that provides some colour and syntax highlighting as well as

customisable colour schemes improving the overall experience.

wdiff Front end for diff that provides the facility to compare on a word-by-word basis.

5 Text manipulation

Note

All text manipulation tools accept piped streamed input (’|’).

5.1 Filters

5.1.1 awk

AWK is a scripting language whose purpose is to manipulate data and generate reports. The awk command line

tool uses the language but requires no compiling. It is most commonly used for pattern searching and matching

in documents.

1Not installed by default.

9

https://git-scm.com/
https://subversion.apache.org/

As it is a rather specialised topic it falls outside the scope of this text. It is however a tool that anyone interested

in data/text processing should be aware of and have a basic know-how of its uses at the very least.

cmd opt args details

awk {<script>} <file name> Execute an AWK script on a file’s data.

Examples

//Prints all lines from data.txt that contain 'Unix'.

awk '/Unix/' data.txt

//Prints lines 5 to 10 from data.txt.

awk 'NR>=5&&NR<=10' data.txt

//Prints the date (col 7) and month (col 6) for each files/folders.

ls -l | awk '{printf "%s %s \n", $7, $6}'

Some useful links:

• The AWK language

• GNU AWK Manual (gawk)

• Linux awk manual

5.1.2 grep

Global regular expression print is used for matching regular expression against text in file(s) or a streamed

input and outputting the resulting matches.

cmd opt args details

grep <regex pattern> <file name> Find and output lines that have a match.

grep -n <regex pattern> <file name> Find and output lines along with their line number(s)

that have a match.

grep -i <regex pattern> <file name> Find and output lines that have a case-insensitive

match.

grep --color <regex pattern> <file name> Find and output lines that have a match with the

matched pattern in colour.

This tool can search multiple files (by use of a path + wildcard) as well as streamed inputs (using piping). It

offers a multitude of other options making it a very powerful tool worth knowing about (see GNU grepmanual).

5.1.3 sed

Stream editor’s common usage case includes substitution, removal and, of course, filtering. Its uses can overlap

with awk.

Here, we are just going to go over the substitution.

10

http://awklang.org/
https://www.gnu.org/software/gawk/manual/
http://man7.org/linux/man-pages/man1/gawk.1.html
https://www.gnu.org/software/grep/manual/

cmd opt args details

sed <pattern> <file name> Apply the replacement pattern to file and print results.

sed -e <patterns> <file name> Apply the replacement patterns to file and print results.

sed -n <patterns> <file name> Apply the replacement patterns to file and print only modified lines.

Patterns are formatted as such: s/pattern to match/replacement/flags. There are 4 types of flags, and

they are optional as the default is to match and replace the first occurrence on each lines..

1. g: (global) replace all occurrences,

2. n: the nth match on each line will be substituted,

3. p: print the original content,

4. w <file>: means write the results to a file.

For multiple patterns a ; is used to separate them:

's/pattern 1/replacement 1/flag; s/pattern 2/replacement 2/flag'

Examples (using a fictional ’data.txt’ as source)

Replacing text

//Replace all first found instances of 'Berlin' in each lines with 'London'

sed 's/Berlin/London/' data.txt

//Replace all first found instances of (a) 'Anna' with 'Celine' and (b) 'Bob' with

//'John Wick' in each lines.

sed -e 's/Anna/Celine/; s/Bob/John Wick/' data.txt

//Replace all found instances of 'the' with 'this' in line 3

sed '3s/the/this/g' data.txt

//Replace all found instances of 'the' with 'this' in lines 3 → 8

sed '3,8s/the/this/g' data.txt

//Replace all found instances of 'the' with 'this' in lines 3 → end of file

sed '3,$s/the/this/g' data.txt

Deleting lines text

//Delete the 2nd line

sed '2d' data.txt

//Delete lines 5 → 10

sed '5,10d' data.txt

Inserting or appending lines

//Insert line 'this is cool' before at the beginning of the text

sed 'i/this is cool' data.txt

//Append line 'this was cool' after text

sed 'a/this was cool' data.txt

11

5.2 Slicing and extracting

5.2.1 head and tail

When passing a file or piping a stream to either head or tail it takes a chunk of a specified size of just the

beginning or end respectively. When dealing with files, the target file name is appended to the end of the

arguments.

cmd opt args details

head -c / --bytes= <num> Prints the first num bytes of each file. When prefixed with a - ; prints

all but the last num bytes of each file.

A multiplier suffix can be added: b , kB , K , MB , M , GB G , ...

head -n / --lines= <num> Prints the first num lines (default=10). When prefixes with - ; prints

all but the last num lines of each file.

cmd opt args details

tail -c / --bytes= <num> Prints the last num bytes of each file. When prefixed with a + ; prints

all bytes from and including the byte num .

A multiplier suffix can be added: b , kB , K , MB , M , GB G , ...

tail -n / --lines= <num> Prints the last num lines (default=10). When prefixed with a + ; prints

all lines from and including line num .

tail -f / --follow Keeps an eye on the target file and prints whatever and whenever new

data is added to the end of said file.

tail -F Same as -f but also retries to open a file even if temporarily

inaccessible.

tail --pid= <PID> Terminate operations when following a file (-f) with the given PID

dies.

Example: Prints any new lines with ”error” generated from a log

Here we are piping the output of tail into grep to filter just the updates we are interested in (the ones

with ”error” in them).

tail -f server.log | grep -i error

5.2.2 cut

The cut command is another extensive tool that, in simple terms, removes sections from each line of files. It

can be extremely useful in extracting data from large sets and is worth learning about in more details.

12

opt args details

-b , --bytes= LIST Select only the listed bytes.

-c , --characters= LIST Select only the listed characters.

-d , --delimiter= DELIM Use DELIM instead of TAB as field delimiter.

-f , --fields= LIST Select only the listed fields; also print any line that contains no

delimiter character, unless the -s option is specified.

-n (ignored)

--complement Complement the set of selected bytes, characters or fields.

-s , --only-delimited Do not print lines not containing delimiters.

--output-delimiter= STR Use STR as the output delimiter (default: input delimiter).

-z , --zero-terminated State that the line delimiter is NULL, not newline.

There can only be one exclusively of the other of the following options: -b , -c or -f .

Lists (LIST) are comprised of 1 or more ranges: RANGE or RANGE_1,RANGE_2,...,RANGE_N

Ranges are formatted as such:

N : N ’th byte, character or field, counted from 1

N- : from N ’th byte, character or field, to end of line

N-M : from N ’th to M ’th (included) byte, character or field

-M : from first to M ’th (included) byte, character or field

5.3 Word Count

cmd opt args details

wc -m <file name> Print the character count of a file.

wc -l <file name> Print the line count of a file.

wc -w <file name> Print the word count of a file.

5.4 Sort

cmd opt args details

sort <file name> Sorts and prints lines in file alphabetically.

sort -r <file name> Sorts and prints lines in file alphabetically in reverse

order.

sort -n <file name> Sorts and prints lines in file numerically.

sort -k3 <file name> Sorts and prints lines in file based on the 3rd column

(k3).

sort -o <output file name> <input file name> Sorts and outputs lines from a file alphabetically into

another.

5.5 Concatenate

The cat tool can display text, copy text from 1 or more sources to a new document or append to the end of an

existing one.

13

cmd opt args details

cat <filename ...> Prints out content of file(s).

cat <filename ...> > <output filename> Create new output file and copy content of source file(s)

to it.

cat <filename ...> » <output filename> Copy and append content of source file(s) to an output

file.

cat -n <filename ...> Prints out content of file(s) with a line number.

cat -s <filename ...> Prints out content of file(s) skipping empty lines.

The tac tool is used to concatenate and print files in reverse.

cmd opt args details

tac <filename ...> Prints out content of file(s) in reverse.

tac -b <filename ...> Attach the separator (default is a newline) before instead of after.

tac -r <filename ...> Interpret the separator as a regular expression.

tac -s <str> <filename ...> Use the string str as the separator insead of newline.

6 System variables

cmd details

env Allows for running another program in a custom environment without modifying the current one.

printenv Prints environment variable(s).

set Sets/unsets shell variables. Without an argument it will print a list of all variables and shell

functions.

unset Deletes shell and environment variables.

export Sets environment variables.

echo Prints value of a given variable* (don’t forget the $ before the key - e.g.: echo $KEY).

* To check if the key is an environment variable, use printenv. Its output will be empty if the key is not an

environment variable.

6.1 Syntax

Names of variables are case-sensitive. Note that

spaces cannot be used in un-quoted ('', "") values

and that multiple values assigned to a single key must

be separated by colon (:).

Format

KEY=value Value

KEY="some value" String value

KEY='some value' String value

KEY=value1:value2:valueN Multiple values

6.2 Environment variables

Environment variables are available system-wide and are inherited by all spawned child processes and shells.

14

Conventionally, environment variables have their names in uppercase. E.g.: MY_NAME='John Smith'

6.2.1 Persistence

Environment variables can be made to persist between sessions, whether for the same user, multiple users on

the same system or all users on a bash login shell (profile).

User Add an export line at the end of the user’s .bashrc file (located in the $HOME/ directory) and

save it. To reload your .bashrc configuration use: source /.bashrc.

E.g.: export MY_NAME='John Smith'

System-wide Add the variable’s key-value pair in the /etc/environment file on a new line.

E.g.: MY_NAME='John Smith'

Bash profile Add an export line at the end of the /etc/profile file.

E.g.: export MY_NAME='John Smith'

6.3 Shell variables

Shell variables are ones that are only apply to the current shell instance. Each shell (bash, zsh, fish, ...) has

its own set of internal variables.

7 Maths in the terminal

Doing basic arithmetic and boolean evaluations in the shell can be done with either the expr expression utility

or the native BASH shell syntax. Note that maths can be done in awk as well if you want to take that route.

Values can be substituted with variable names from previous declaration whose values are of a numbered type.

Just remember to add the dollar sign ($), which means in this context ”value of ”, before the name of the

variable (e.g.: expr 3 + $my_var).

15

7.1 Evaluating expressions (expr)

Operator Description expr

Arithmetic

+ Addition expr 2 + 3

- Subtraction expr 3 - 2

* Multiplication expr 3 * 2

/ Division expr 3 / 2

% Remainder expr 3 % 2

Relational

== Equality expr 3 = 3

!= Not Equality expr 3 != 4

> Larger than expr 5 \> 3

< Smaller than expr 3 \< 5

>= Larger/equal than expr 5 \>= 3

<= Smaller/equal than expr 3 \<= 5

Other

match Match string with a regular expression expr match $str $regex

substr Sub-string (position counted from 1) expr substr $str $pos $length

length String length expr length $str

index Position of first character match or 0 expr index $str $c

7.2 Floating point calculations (bc)

As well as an interactive command line calculator, bc allows calculations to be piped into it. It makes this

particularly useful when dealing with floating point calculations in either the shell or shell scripts.

To pipe just echo the calculations in quotations to bc.

Examples

echo '2 + 3' | bc

echo '7 % 2' | bc

echo '7 / 2' | bc

echo '(5 + 1) * 2' | bc

7.3 Prime factors (factor)

The factor utility can be used decompose a given integer into a list of prime factors.

7.4 Bash operators

Bash offers all basic operators as well as relational, logic, and bitwise.

For Bash, double brackets ’(())’ are used to:

a) enable arithmetic operations,

16

b) use relational and logical operators without the test2 utility (e.g.: ((1 + 1))),

c) do without the dollar sign $ on integers and array variables (e.g.: ((a + arr[0]))).

There are 2 ways to print a result:

1. echo-ing the expression (e.g.: echo $((5 + 3))), or

2. assign a variable to the result (e.g.: sum=$((5 + 3))) and then print that (e.g.: echo $sum).

Operator Description BASH

Arithmetic

+ Addition ((2 + 3))

- Subtraction ((3 - 2))

++ Increment ((var++))

-- Decrement ((var--))

* Multiplication ((2 * 3))

/ Division ((3 / 2))

% Remainder ((3 % 2))

xe Exponent ((var**2))

Relational

== Equality ((3 == 3))

!= Not Equal ((3 != 4))

> Greater than ((5 > 3))

< Lesser than ((3 < 5))

>= Greater/equal than ((5 >= 3))

<= Lesser/equal than ((3 <= 5))

Logical

&& AND (($a && $b))

|| OR (($a || $b))

! Not/Negate ((!$a))

Bitwise

& Bitwise AND ((3 & 3))

| Bitwise OR ((3 | 4))

^ Bitwise XOR ((5 ^ 3))

~ Bitwise complement ((3 ~ 5))

<< Left shift ((5 << 3))

>> Right shift ((3 >> 5))

2see section 12.5 The test command and its operators

17

8 Users and Groups

8.1 Users

cmd opt args details

useradd <username> Adds a username.

useradd -m Create user directory as /home/username.

useradd -g <group> Set the initial login group for a username.

useradd -G <group(s)> <username> Add membership to supplementary group(s) (no

spaces, seprated with commas) for a username.

passwd <username> Sets a password for username.

usermod -a -G <groups> <username> Append user membership to group(s).

usermod -d <path> -m <username> Change user’s home directory.*

usermod -l <new username> <old username> Changes a user’s login name.*

userdel <username> Delete user account.

userdel -r <username> Delete user account as well as its home directory

and mail spool.

* Some care must be taken when doing these. See Arch Linux’s WIKI page about it for more information.

Example

useradd -m -g users -G wheel,sudo -s /bin/bash $USER

8.2 Groups

cmd opt args details

groups Shows current user’s group memberships.

groups <username> Shows user’s group memberships.

id Shows current user’s group memberships inc. UIDs and

GIDs.

id <username> Shows user’s group memberships inc. UIDs and GIDs.

groupadd <group> Create a new group.

gpasswd -a <username> <group> Add user to group.

gpasswd -d <username> <group> Remove user from group.

groupmod -n <new group> <old group> Rename a group (will preserve the GID).

groupdel <group> Delete a group.

gpasswd -d <username> <group> Remove user membership from group.

grpck Check integrity of the system’s group files.

A list of the most common groups found in Linux systems is available in appendix C.

18

https://wiki.archlinux.org/index.php/Users_and_groups#User_management

8.3 Switch User (a.k.a. Substitute User)

cmd opt args details

su Switch to user root and its default environment.

su <username> Switch a different user and keeps current user’s environment.

su - / -l / --login <username> Switch a different user and its default environment.

8.4 Running as root (Sudoers)

sudo enables execution of restricted commands (root) by users that have been granted that access. Unlike su,

a user does not require knowing the root password.

cmd opt args details

sudo <command> Execute a command with elevated privileges.

sudo -ll Print current sudo configuration.

sudo -lU <username> Print current sudo configuration for a specific user.

Run visudo (/usr/sbin/visudo) to modify the configuration. This needs to be executed from the root account

or with, ironically, sudo (if you have elevated privileges already).

If you’re feeling adventurous you could open the configuration file located in /etc/sudoers directly using

another editor but that will now check for potential syntax errors and, thus, might break things. That is not

recommended.

For information about the configuration file run man sudoers or check out the sudo manual pages.

8.5 File and Directory permission

Figure 1: Sample output from ls -l

All files and directories in Linux have permissions to prevent people from accessing each other’s files on the

machine. These permissions can be viewed with ls -l (see figure 1).

The columns are:

1. 10/11 character section for type and security,

2. Number of links,

3. Owner of the file,

4. Group owner of the file,

5. Size of the file in bytes,

6. Date and time of last modification,

7. File name.

19

https://www.sudo.ws/man.html

8.5.1 Type and security descriptor

The type and access rights to a file is characterised by a 10/11 character long descriptor divided as such:

-

1

r

2

w

3

x

4

r

5

w

6

x

7

r

8

w

9

x

10

+

11

Character(s) Description

1 Type descriptor for the entry.

2→ 5 File permissions that the user (owner) has.

5→ 7 File permissions that the group has.

8→ 10 File permissions that all the other users have.

11 (Optional) Alternate access method.

In summary; owner file permissions will only affect the owner of the file,

group permissions will affect all users assigned to that group and, finally,

the ‘others’ permissions affect every other users on that system.

[1] Type descriptor

- file

d directory

b block file

c character device file

p named/unnamed pipe file

l symbolic link file

s socket file

[11] Alternate access methods

None

. Security context, no alt. access

+ Multiple access methodsa

ae.g.: Access Control Lists

Permission Character For a file For a directory

Read - Content cannot be seen.

r Content can be seen.

Write - Content cannot be altered in any way.

w Content can be altered.

Execute - The file cannot be executed. The directory cannot be changed to.

x The file can be executed. Navigation to the directory available3.

s Set the setuid4 (for users) or setgid4. (for groups) bit. The x flag is set.

The file is executed with the file’s owner

and/or group privileges.

When the setgid flag is set, the

new files created inside the directory

inherits its GID instead of the primary

GID of the user who created the file.

setuid has no effect.

S Same as s but the x flag is not set.

Rarely used. Useless.

t If in the other users permissions it sets the sticky bit5. The x flag is also set.

Useless. See footnote 5.

T Same as t but the x flag is not set.

Rarely used. Useless.

3Using cd.
4Allow users to run an executable with the permissions of that executable’s owner or group.
5Stops non-owning users with write permissions to a folder to delete it or its content. Only the owner that created it or an

administrator (e.g.: root) can delete it.

20

8.5.2 Changing permissions

There is 2 methods available with chmod for changing permissions: textual and numerical.

Text Method

The chmod syntax is as such: $ chmod <who>=<permission(s)> <path>

The ‘who’ argument can be a singular (e.g.: u=, g=, o= or a=) or an aggregate (e.g.: uo=, ug=, ugo=, etc...).

cmd opt args details

chmod u=<permissions> <path> User

chmod g=<permissions> <path> Group

chmod o=<permissions> <path> Other users

chmod a=<permissions> <path> All (users and groups). Same as ‘ ugo ’.

Permissions can be given in their character forms as shown in section 8.5.1 above. Like the ‘who’ argument,

the characters can be combined (e.g.: g=rwx).

To copy permission over just use the letter from which to copy from as the permission. For example:

chmod g=u somefile.txt will copy the owner/user’s permissions to the group’s.

Adding and removing permissions can be done with the + and - characters respectively. For example:

chmod ug+x script.sh will add executable permissions for both owner/user and group.

Numerical Method

The chmod syntax is as such: $ chmod <value> <path>

The value must be either 3 or 4 digits long. The first 3 digits are for the

permission values where the r/w/x values for each access type is summed

up. The 4th digit is used only when a flag needs to be set (see right).

For example:

Owner: rwx = 4 + 2 + 1 = 7

Group: r-x = 4 + 0 + 1 = 5

Others: r-x = 4 + 0 + 0 = 4

Flag: none so 0 or omit.

7

owner

5

group

4

others

0

flag

$ chmod 754 script.sh

Permission values

read (r) = 4

write (w) = 2

execute (x) = 1

none (-) = 0

Flag values

setuid = 4

setgid = 2

sticky bit = 1

none = 0

cmd opt args details

stat -c %a <path> View the existing permissions of a file or directory in numeric form

Change permissions recursively

Finally, to change all content in a folder including any subfolder in the hierarchy, a recursive option is available:

cmd opt args details

chmod -R ... <path> Permissions are applied recursively from path given.

21

8.5.3 Changing ownership

chown changes the owner of a file or directory.

cmd opt args details

chown <new user/owner> <path> Change owning user of a file.

chown :<new group> <path> Change group of a file.

chown <new user>:<new group> <path> Change owning user and group of a file.

Note

• chown needs root privileges (or sudo equivalent).

• chown always clears the setuid and setgid bits.

• Users (except root) cannot use chown to pass ownership of files they own to other users.

Change ownerships recursively

cmd opt args details

chown -R ... <path> Ownership changes are applied recursively from path given.

8.5.4 Access Control Lists (ACL)

Access Control Lists provide an additional permission framework which allows for flexible permissions to be set

for any user/group to any file.

Some distributions will not have this enabled by default (like Arch). As it is a dependency for systemd, it should

already be installed. To enable it, the filesystem must be mounted with the acl option.

A detailed explanation on how to do that and how to use ACL in practice is available in the Arch Linux WIKI

page.

9 System and resources

9.1 Kernel

cmd opt args details

uname -a About the current kernel: all info

uname -v About the current kernel: version

uname -r About the current kernel: release

shutdown now Initiate system shutdown now.

shutdown -r now Restart system now.

9.2 Users

cmd opt args details

w Show who is logged on and what they are doing.

w <user> Show what a particular user is doing.

22

https://wiki.archlinux.org/index.php/Access_Control_Lists

9.3 Processes

cmd opt args details

ps -aux Process Snapshot of all processes

To see a particular process’ snapshot (filter):

$ ps -aux | grep <process name>

9.4 Disks

cmd opt args details

lsblk -f List all devices and show what filesystem are used in each.

df -ah <device> Disk Free: show amount of free space on device (current device if

<device> is omitted.)

du -sh <folder> Disk Usage (disk usage of a directory)

mount Show all the currently mounted points in the system.

mount <device> <folder> Mounts a device to a folder mount point.

umount <device>/<folder> Unmounts a device by its name or folder mount point.

blkid Prints block device attributes/ids (requires elevated privileges).

9.5 Network and ports

See section 10.1 (Device and local network information).

9.6 Monitoring

Here’s some basic monitoring and informational tools included in most Linux distros:

cmd opt args details

top Display Linux processes.

uptime Shows how long the system has been up and running.

vmstat Reports virtual memory statistics.

lsof 6 Displays information about files open to Unix processes

iotop 7 Displays information about processes’ input/output to devices

10 Networking

10.1 Device and local network information

A variety of tools to get information on the local system’s network state and configuration as well as modify

the latter exist, for the most part, in the base installation of all Linux distros. Any missing tools can usually be

installed via the package manager.

6Not all Linux distributions have lsof so it may need to be installed separately with the package manager.

7Not always installed. On Arch, install the iotop package.

23

https://people.freebsd.org/~abe/

cmd opt args details

hostid Prints the numeric identifier for the current host.

hostname Prints or sets the name for the current host.

ip addr Show information for the network devices (replaces ifconfig 1).

ip addr show <device id> Show information for a particular network device (e.g.: eth0).

iw Used to configure wireless network interface (replaces

iwconfig).

route Shows and manipulates current IP routing table.

ss -tuapn Check open ports what processes use them (replaces netstat 1).

arp 1 Allows to view or add content in the linux kernel’s Address

Resolution Protocol table.

A map of network services can be found in /etc/services (” cat /etc/sercices | less ” to browse). To

see the actual status of the system’s installed services use: service --status-all .

10.2 Remote connectivity and troubleshooting

More tools are listed here that deal with network connectivity (LAN and WAN) and can help troubleshoot

problems related to this.

cmd opt args details

tracepath <address> Prints the path take from an IP network to a given host. Less fancy

equivalent to traceroute and does not require root privileges.

traceroute 2 <address> Prints the path take from an IP network to a given host.

ping -c <n> <address> Check connectivity by sending n echo packets to a network

destination’s address.

mtr 2 <address> Combines ping and tracepath into a single command.

host 3 <address> Performs DNS lookups.

dig 3 <domain name> The Domain Information Groper queries DNS and helps

troubleshoot related issues.

nslookup 3 <address> Query internet name servers. Interactive without the argument.

whois 2 <website> Query and prints the WHOIS data for a website.

10.3 Downloading files from the internet

There are 2 most used utilities to grab files from the internet: curl and wget .

cmd opt args details

curl -O <file URL> Download a file from the internet and save it with the same file name as the remote

version.

wget <file URL> Download a file from the internet.

1Part of the net-tools package in Arch Linux. Note that for other distros these tools are not always installed by default.
2Not always installed by default.
3Part of the dns-utils package in Arch Linux. Note that for other distros these tools are not always installed by default.

24

10.4 Secure Shell (SSH)

SSH aims to provides a secure encrypted connection between two hosts over an insecure network. With it you

can login to another networked machine, transfer files between the guest and the host and execute commands

on the remote machine. There are a wide array of command line utilities centred around SSH. Here’s a summary

of those:

cmd details

ssh SSH Client.

ssh-keygen Creates a key pair for public key authentication.

ssh-copy-id Configures a public key as authorized on a server.

ssh-agent Holds the private keys for single sign-on.

ssh-add Add keys to the SSH agent

scp RCP file transfer client.

sftp FTP file transfer client.

sshd OpenSSH server (daemon).

The daemon service sshd takes its configuration from /etc/ssh/sshd_config whilst the host ssh configuration

is taken from the following in order:

1. Command line options,

2. User configuration file (~/.ssh/config),

3. System configuration file (/etc/ssh/ssh_config).

For all the nitty-gritty details check out the OpenSSH Manual.

10.4.1 Connecting to a remote SSH server

Connecting to a remote SSH server requires at the very least the target’s address either in IP or domain name

format. If the user account on the remote system is different than the local one, a valid username must be

provided as well.

cmd details

ssh remote-host Connect to host with same currently used local username.

ssh username@remote-host
Connect to host with different username.

ssh -l username remote-host

ssh -p port remote-host Connect to host with a port number8.

ssh -C remote-host Connect to host with Compression enabled.

To exit from the SSH session just type ‘exit’.

8SSH runs on TCP/IP port 22 by default.

25

https://www.openssh.com/manual.html

Troubleshooting

If there are issues connecting to the host first check that:

• the host has the server daemon (sshd) running,

• the client has ssh installed,

• the host IP address is correct,

• the host’s sshd server daemon’s listening port is not begin blocked (firewall) or forwarded incorrectly,

• the username and password used are correct.

HINT: To debug the connection use the verbose mode to get more information: ssh -v remote-host

10.4.2 Running remote commands/scripts

Executing commands

To execute a command on a remote system is simple:

ssh username@remote-host 'COMMAND'

There are 3 ways to execute multiple commands:

1. ssh username@remote-host 'COMMAND1; COMMAND2; COMMAND3'

2. ssh username@remote-host 'COMMAND1 | COMMAND2 | COMMAND3'

3. ssh username@remote-host << EOF

COMMAND1

COMMAND2

COMMAND3

EOF

Executing local shell scripts

Run a local script on the remote host:

ssh username@remote-host 'bash -s' < SCRIPT

And with arguments:

ssh username@remote-host 'bash -s' -- < SCRIPT --ARG

10.4.3 Copying files

The scp command is used to copy files between a local system a the remote ssh server. The syntax is as

follows:

Copy local file to remote system:

scp <local file path> remote_host:<remote folder>

Copy remote file to local system:

scp remote_host:<remote file path> <local folder>

26

Examples

Local→ remote:

scp ~/Documents/diary.txt root@192.168.1.25:/var/tmp/

Remote→ local:

scp root@192.168.1.25:/var/log/sddm.log ~/rlogs/

A bit of trickery with the tar command (using bzip2) is required to copy entire folders:

Copy local folder to remote system:

tar -cvj <local folder> | ssh remote-host "tar -xj -C <remote folder>"

Copy remote folder to an archive in local system:

ssh user@remote-host "tar -jcf - <backup path>" > backup-name.tar.bz2

For backing up9 local folders recursively to a remote ”backup” server, rsync can be used instead:

rsync -az <local folder> remote-host:backup/

10.4.4 Starting the server daemon

To manage the execution for the sshd server on a systemd based Linux distro type in the console:

cmd details

systemctl status sshd Checks the sshd daemon status.

systemctl start sshd Starts the sshd daemon.

systemctl stop sshd Stops the sshd daemon.

systemctl restart sshd Restarts the sshd daemon.

systemctl enable sshd Enable auto-start at system boot time.

systemctl disable sshd Disable auto-start at system boot time.

Be sure to go through the configuration prior starting (/etc/ssh/ssh_config). If you change the configuration

whilst sshd is running you will need to restart it.

10.4.5 SSH Keys

SSH keys enable authentication between a client and a server without the need to have passwords.

1. Generate keys on the client: ssh-keygen -t rsa

2. Copy the public key to the remote system: ssh-copy-id remote-host

(1) The public key can be found as ~/.ssh/id_rsa.pub and the private key ~/.ssh/id_rsa .

(2) An SSH session to the remote system will be started with a username/password authentication method.

Once validated the public key will be copied and future logins won’t require a password.

9See ”11 Backup” for more on the subject.

27

Disabling password authentication on the server

Uncomment and modify the following line in the /etc/ssh/ssh_config file:

#PasswordAuthentication yes → PasswordAuthentication no

Then make sure these lines are present and set to their defaults as such:

PubkeyAuthentication yes

ChallengeResponseAuthentication no

Only do the above if you have a working SSH key-based authentication with the server in place!!!

Otherwise you won’t be able to log-in.

10.4.6 Secure File Transfer Protocol (SFTP)

A much better alternative to the humble ftp10 command, this provides a much more secure means to transfer

files across a network.

The syntax to login into a remote host is simply:

cmd details

sftp username@remote-host Connect to host.

sftp -oPort=<port> username@remote-host Connect to host on a specified port (e.g.: 22).

sftp username@remote-host:<folder> Connect to host and begin session at given folder path.

Once connected and authenticated, the sftp interactive prompt will appear. To get a list of the available

commands just type ‘ help ’ or ‘ ? ’. To quit the session type either ‘ exit ’ or ‘ bye ’.

Be aware that there is also a ”Batch”mode enabling scripted interactions from a file and an ”automatic retrieval”

mode for just downloading files quickly.

11 Backup

Remote sync (rsync 11) is a network capable file synchronisation tool. For copying files across a network it

is preferable to scp 12 as it is more efficient and bandwidth friendly. When synchronising files it only copy the

differences between them instead of the entirety.

There is a myriad of options, like most command line utilities, so this will just be a basic ”minimum to get things

running” description of rsync .

The basic syntax is: rsync <option(s)> <source> <destination>

10Seriously, don’t use the old ftp command unless, at least, you are on a trusted local network with no connection to the outside

(internet). It transmits authentication in plain text.
11Not always installed by default.
12See ”10.4 Secure Shell (SSH)”

28

Note: Trailing directory slash ‘ / ’

When dealing with directories, the trailing / matters.

<source> <destination>
copy/sync source into destination

<source> <destination>/

<source>/ <destination>
copy/sync content of source into destination

<source>/ <destination>/

11.1 Commonly used options

The options in the following table don’t require special option-specific arguments and, like most commands,

single character options can be combined (e.g.: -hrv).

opt args details

-a Archive mode - recursively copies files and preserves their properties on copy).

-A Preserves Access Control List - good for system backups.

-b Create a backup.

-c Skips files based on checksums instead of modification time and size.

-e <rsh> Specify what remote shell (rsh) to use (e.g.: ssh).

-h Outputs numbers in human readable format.

-m Deletes any copied/synchronised empty directories at destination

(--prune-empty-dirs).

-P Same as --partial and --progress .

-q Quiet output (no info except errors).

-r Recursively copy files from the directory (timestamps/permissions not preserved).

-v Verbose output (more info).

-X Preserves eXtended attributes - good for system backups.

-z Compress (zips) file data during transfer.

--partial Allows resume on operation that were interrupted.

--progress Shows copy/synchronisation progression.

--delete Deletes any superfluous destination files if they are not in source any longer.

--include= ’filter’ Include all files/directories that match the filter (see note).

--exclude= ’filter’ Exclude all files/directories that match the filter (see note).

Note: --include / --exclude

1. Filter can use the wildcard (*) character. For example: '.*' would match all dot files/directories. Or,

'*.odt' would match all files with an ‘odt’ extension.

2. --include and --exclude work in tandem. Meaning that in order to only have a certain file filter

exclusively, everything else must be excluded. e.g.: Just text documents in a directory (non-recursive)

would be --include='*.txt' --exclude='*'

3. To combine multiple filters just format them as such: {"filter1","filter2", ..., "filtern"}

29

11.2 Local backups

Example 1: Copy/Sync a single file

Here we just need to copy/update a file so that both the source and destination are the same. None of the

special file properties need to be conserved.

rsync some-file.tar.gz ~/Backups/

Example 2: Copy/Sync an entire folder

Here we want to update the archive of a folder and its content whilst preserving all file/folder properties

such as groups, owner, permissions and modification times. Special files like symlinks need to be also

preserved inline with a proper backup. To do that we need:

• copy any sub folders and content in the directory tree like an ‘archive’ (-a),

• remove at the destination any file/folder that doesn’t exist any longer in the source (-m).

This results in the following syntax:

rsync -am ~/Documents ~/Backups/

Example 3: Copy/Sync all the jpg images in the ” ~/Pictures/ ” directory tree

Here we are looking to make a new backup of all the images of type jpg that can be found in the Picture

folder and any sub folders recursively. The ”Pictures” backup should also be in a dedicated directory

inside of the ”Backups” folder. For that to work we need to do the following:

• make sure to remove any empty directories created at destination as a by-product of the recursive

archival process (m),

• include the directories ('*/') so that the recursion works,

• include any files with the jpg file extension ('*.jpg'),

• exclude everything else (--exclude='*'),

• not have a trailing slash on the source directory (~/Pictures).

This results in the following syntax:

rsync -am --prune-empty-dirs --include={'*/','*.jpg'} --exclude='*' ~/Pictures

~/Backups/

30

Example 4: Backup entire system to an external drive

To make a backup of the entire local system (/) on a mounted external drive requires being mindful of a

couple of things:

(a) Not all directories/files should be copied such as temporary files/folders, hardware related files, and

mount points for other drives (see appendix B ”Linux directory structure” for more details).

(b) The destination directory (mount point for the backup drive) must be excluded lest rsync run into

an infinite loop. For this example, let’s assume we’ve mounted the backup drive in /mnt/backup .

(c) As it is the entire system we will need to either be running form the root account or have adequate

elevated sudo privileges to do so.

Here are the properties that need to be covered by the command:

1. make sure to conserve all file properties, attributes and access control lists (-a , -A , -X),

2. show information (-v) and progress (--progress) as it will be a large process to backup everything,

3. exclude all special file/directories from the backup (/dev/* , /proc/* , /sys/* , /tmp/* , /run/* ,

/mnt/* , /media/* , /lost+found a)

All of this leaves us with the following syntax:

rsync -aAXv --progress --exclude={"/dev/*","/proc/*","/sys/*","/tmp/*","/run/*",

"/mnt/*","/media/*","/lost+found"} / /mnt/backup

aThe lost+found directories are special fsck folders for recovered lost file (orphaned inodes).

11.3 Remote backups

Remote backups are similar in syntax as to the local ones. To connect to the remote system, rsync can either

use it’s internal protocol or just tunnels through SSH. Credentials to the remote system must have been setup

prior. The syntax for remote operations is:

local→ remote: rsync <option(s)> <local directory> username@remote-host:<remote directory>

remote→ local: rsync <option(s)> username@remote-host:<remote directory> <local directory>

Example 1: Copy/Sync ~/Documents folder to a remote LAN machine

Let’s say that we want to copy/sync our Document folder to another machine on the local network

(192.168.1.56) so that when we login with the same username on that (johndoe), we have the same

documents there as in our current system. For that to work we need to do the following:

• copy the files/folders recursively with their properties (-a , -X),

• use compression to transfer the data (-z),

• show progress and enable resume if the network connection breaks/times-out during transfer (-P),

• Remove any superfluous files on the remote if they are not the local folder any longer (--delete).

We end up with the following syntax:

rsync -aXzP --delete ~/Documents/ johndoe@192.168.1.56:/home/johndoe/Documents/

31

Example 2: Copy/Sync LAN remote pacman ’s cached packages to local

Say the cache on a remote machine (192.168.1.3) has the latest packages for an Arch based Linux

distro (/var/cache/pacman/pkg/) and, to avoid re-downloading all of these from the internet for a local

system’s update, we just copy them over. For that to work we need to do the following:

• copy the files/folders recursively with their properties (-a , -X),

• use compression to transfer the data (-z),

• show progress and enable resume if the network connection breaks/times-out during transfer (-P),

• copy as root since these are system packages.

This leaves us with:

rsync -aXzP root@192.168.1.3:/var/cache/pacman/pkg/ /var/cache/pacman/pkg/

Example 3: Backup a local file jdbp.tar.gz to WAN remote backup system

In this scenario we are creating a up-to-date copy of the Pictures directory on a remote server on the

internet (backups.jdoe.dev). For this we need to do the following:

• copy the file with its extended properties intact (-X),

• use compression to transfer the data (-z),

• show progress and enable resume if the network connection breaks/times-out during transfer (-P),

• use ssh on the none-default port 2514 to login/access the remote machinea (-e ssh).

The syntax becomes:

rsync -XzP -e 'ssh -p 2514' /home/johndoe/jdbp.tar.gz johndoe@backups.jdoe.dev:/dump/

aAssuming ssh credentials have already been created prior.

12 Shell Scripting

Shell scripting allows automation on any groups of commands you may want to execute with the added bonus

of some common programming flow control idioms and variable storage.

This chapter introduces the basics required to get reasonably functional scripts off the ground. For an advance

look at all that shell scripting can offer check out The Advanced Bash Scripting Guide by Mendel Cooper.

12.1 The script file

A shell script file is a simple text file that can be executed. To make one just create a blank text file with the .sh

extension and make it executable (see 8.5.2 Changing permissions).

At the very top of the file remember to add this line: #!/bin/bash

It is a special comment (#) that shells look for and tells that a) this is a shell script and b) the kind of shell script

it is. In our above case, the line informs the current shell that it should be run with Bash.

32

https://www.tldp.org/LDP/abs/html/abs-guide.html

12.2 Bash special parameters

Bash provides a number of useful ”special parameters”.

Parameter Description

$# Number of positional parameters (like argc in C/C++’s main()).

$0 Name of the shell or shell script (like argv[0] in C/C++’s main()).

$1, $2, ... $n Positional parameters (like argv[1], ..., argv[n] in C/C++’s main()).

$@ Array-like construct of all positional parameters.

$IFS Input field separator.

$* is the IFS expansion of all positional parameters.

$- Current options set for the shell.

$$ Process ID (pid) of the current shell (not subshell)

$_ Most recent parameter

(or the abs path of the command to start the current shell immediately after startup).

$? Most recent foreground pipeline exit status (see 12.3 Exit codes).

$! Process ID (pid) of the most recent background command.

12.3 Exit codes

All Bash built-ins, if successful, return a ’0’ exit code. When unsuccessful they return a non-zero status. Below

is a list13 of reserved error exit codes for Bash.

Code Description

1 Catch-all for general errors.

2 Incorrect shell built-in usage (i.e.: invalid options, missing arguments, etc...)

126 Failed to execute invoked command.

127 Command not found.

128 Invalid argument to exit14.

128+n Fatal error ’n’.

130 Script terminated via Ctrl + C

When building shell scripts returning exit codes when failure occurs should be considered. A full list of the most

common exit codes found in Linux is available in appendix D.

13Taken from Advanced Bash-Scripting Guide - Appendix E.
14Exit code can only be integers in the range of 0-255

33

https://www.tldp.org/LDP/abs/html/exitcodes.html

12.4 Conditional constructs

((...)) The brackets evaluate the expression within. If the value of the expression is !0, the status returned

is 0. Otherwise the status returned is 1. Also used in arithmetic.

[...] The single bracket expression is POSIX15 so offers the best compatibility between different shells.

The ”[” is an actual command and its counterpart, ”]”, is an argument signalling the end of the

expression.

[[...]] The double bracket expression, unlike the single version, is a Bash extension and thus subject to

support issues based on what shell is used to run the script. It’s evaluation of expressions for

certain operators and word splitting rules are also a little different (<, &&, ||, (), = and ~=).

For more details check out Bash Reference Manual: Conditional Constructs.

12.5 The test command and its operators

The test command is used to evaluate conditional expressions, meaning that the results can either be true or

false. Its syntax is as follows:

test <expression>

or

[<expression>]

Several built-in operators can be used with the test command. These operators can be classified into 3 groups:

numeric/logical operators, string operators, file operators.

12.5.1 Numeric operators

Purpose Operator Description

Equality <a> -eq True if integer a is equal to b.

Greater/equal than <a> -ge True if integer a is greater than or equal to b.

Greater than <a> -gt True if integer a is greater than b.

Lesser/equal than <a> -le True if integer a is less than or equal to b.

Lesser than <a> -lt True if integer a is less than b.

Not Equal <a> -ne True if integer a is not equal to b.

Example: test $a -eq $b or [$a -eq $b]

15Portable Operating System Interface: set of IEEE standards for maintaining compatibility between operating systems.

34

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Conditional-Constructs

12.5.2 String operators

Purpose Operator Description

Same <str a> = <str b> True if string a is identical to b.

Not same <str a> != <str b> True if string a is not identical to b.

Not null <str> True if str is not null.

Length > 0 -n <str> True if length of str is greater than zero.

Length is 0 -z <str> True if length of str is equal to zero.

Example: test $a = $b or [$a = $b]

12.5.3 File comparison operators

Purpose Operator Description

Same <file a> -ef <file b> True if a and b refer to the same device and iNode number.

Newer <file a> -nt <file b> True if a is newer (based on modification date) than b, or if a exists

and b does not.

Older <file a> -ot <file b> True if a is older than b, or if b exists and a does not.

12.5.4 File state operators

Purpose Operator Description

Existence -a <file name> True if file exists.

Existence (Block file) -b <file name> True if block file exists (e.g.: hard drive or partition).

Existence (Character file) -c <file name> True if character file exists (e.g.: TTY device).

Existence (Directory) -d <file name> True if directory exists.

Existence -e <file name> True if file exists (same as -a).

Existence (Regular file) -f <file name> True if file exists and is of regular type.

Existence (+ with setgid) -g <file name> True if file exists and has the setgid flag set.

Existence (+ owned by GID) -G <file name> True if file exists and is owned by effective group ID.

Existence (symbolic link) -h <file name> True if file exists and is a symbolic link.

Existence (+ with ’sticky’ bit) -k <file name> True if file exists and has a ”sticky” bit set.

Existence (symbolic link) -L <file name> True if file exists and is a symbolic link.

Existence (+ modified) -N <file name> True if file exists and modified since last read.

Existence (+ owned by UID) -O <file name> True if file exists and is owned by the effective user ID.

Existence (pipe) -p <file name> True if file exists and is a named pipe (FIFO).

Existence (+ readable) -r <file name> True if file exists and is readable.

Existence (+ size > 0) -s <file name> True if file exists and has a size greater than zero.

Existence (socket) -S <file name> True if file exists and is a socket.

Opened file descriptor -t <fd> True if file descriptor is open and refers to a terminal.

Existence (+ with setuserid) -u <file name> True if file exists and setuserid flag is set.

Existence (+ writeable) -w <file name> True if file exists and is writeable.

Existence (+ executable) -x <file name> True if file exists and is executable.

35

12.6 Variables

To assign a value to a variable simply put the variable and the value together separated with an equal sign

without any spaces between (=). There is no need to do type declaration so for example:

myint=10

mystr="hello, world!"

To access your variable’s stored value just prefix the variable’s name with a dollar16 ($) sign.

1 for i in {0 . .10} ; do

2 echo ”$mystr”

3 done

12.7 Quotation marks and Escape character

The double quotation marks ("") and single quotation marks ('') are used to hide special characters from the

shell. The doubles only hide white-spaces leaving the other special characters to be interpreted by the shell

whilst the singles hide both - essentially making whatever is in between verbatim text.

The backslash (\) enables per-character granularity in hiding special characters. In short, it is the same as the

single quotes but for single characters only.

Type White-space Special chars Use(s)

"" Hidden Interpreted Assigning strings that contain 2+ words.

'' Hidden Hidden Passing command to other programs.

\ Hidden Hidden Hides a single special character from shell interpretation.

For example:

Demo script:

1 s t r=”Hel lo , world ! ”

2 echo ’ Test ing s ing le quotes : $str ’

3 echo ” Test ing double quotes : $str ”

4 echo ” Test ing backslash : ” Hel lo , \ world !

Output:

Testing single quotes: $str

Testing double quotes: Hello, world!

Testing backslash : Hello, world!

12.7.1 Back quotes

Back quotes (``) are used for storing or using the

result of a given command.

Example:

1 dir_content =‘ ls ‘

2 echo ” D i rec tory content : ”

3 echo ” $dir_content ”

16$ means, in this context, ‘value of ’.

36

12.8 Printing

There are 2 options to print content to the console: echo and printf. Both are pretty universal17. The printf

functionality/utility provides more control over the output format compared to echo. To note that, by default,

echo adds a newline automatically unless instructed otherwise whereas printf does not.

12.8.1 echo

cmd opt args details

echo <string> Prints string.

echo -n <string> Prints string but omit newline from the output.

echo -e <string> Prints string and enable the function of the backslash (\) character.
echo -E <string> Prints string and disable the function of the backslash (\) character.

12.8.2 printf

printf takes a first string with formatting markers and then the arguments to place into said string.

cmd opt args details

printf <format> <argument(s)> Prints formatted string with argument(s).

The <format> string can contain:

1. Normal text/characters that will be printed verbatim.

2. Interpreted text/characters that are escaped with a backslash (\).

Sequence Description

\" Double quote.

\NNN Character with octal value NNN 1 to 3 digit long.

\\ Backslash.

\a Alert (BEL).

\b Backspace.

\c Produce no further output.

\f Form feed.

\n New line.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\xHH Hexadecimal byte value ’HH’ (1 to 2 digits).

\uHHHH Unicode (ISO/IEC 10646) character with hexadecimal value ’HHHH’ (4 digits).

\ Unicode character with hexadecimal value ’HHHHHHHH’ (8 digits).

\%\% A single %.

\b <argument> as a string with backslash escapes interpreted (except octal: \0 or \0NNN)

17Both are built-in commands in Bash and most distros will also have a stand-alone binary of those (try ’type -a echo’ and

’type -a printf’ to verify that.)

37

3. Insertion specifications that describe how the <argument(s)> will be printed. The format of this is %MS

where M is the optional modifier and S is the specification character (e.g.: %4.1d).

A modifier can be composed of any of the following in order:

- Left-adjust the argument conversion.

number Minimum field width which can be padded when necessary (int).

. Separator for field width and precision.

number Precision that specifies the (a) max number of characters from a string, (b) digits after the

decimal point of a float value or (c) minimum number of digits for an integer to be printed.

h or l Differentiate between a short and long integers.

The argument conversion specification can be any 1 of the following:

Spec. char Description

d , i Integer given as a decimal number.

o Integer given as an unsigned octal number.

x , X Integer given as an unsigned hexadecimal number.

u Integer given as an unsigned decimal number.

c Integer given as an ASCII character whose code will be used.

s String.

f Floating-point number (default precision of 6).

e , E Floating-point number given in scientific notation (default precision of 6).

p Memory address pointer.

% Literal percent sign (”%”).

Example 1

printf "My name is \"%s\".\nI'm %u years old." "Bart Simpson" 10

Composed of:

• Normal text,

• Escaped characters: literal double quotation marks (\”) and new line (\n),

• A ”string” insertion: %s,

• An ”unsigned decimal number” insertion: %u.

Result:

My name is Bart Simpson.

I'm 10 years old.

38

Example 2

printf "Num: \'%8.2f\'\nString: \"%8.5s\"" 1234.5678 "hello world"

Composed of:

• Normal text,

• Escaped characters: literal double and single quotation marks (\”, \’) and new line (\n),

• An ”floating point number” insertion with a min field width of 8 and with 2 digits after the decimal

point: %8.2f.

• A ”string” insertion with a min field width of 8 characters and 5 characters to be shown from the

string: %8.5s,

Result:

Num: ' 1234.57'

String: " hello"

12.9 User input

To take in input in the terminal from a user the read utility can be used.

cmd opt args details

read Reads a single line from the standard input and store it in ‘REPLY’.

read -a ARRAY Takes the words read and stores them in an array ‘ARRAY’.

read -d DELIM Continues reading until the first character of DELIM is read, rather than newline.

read -e Uses ‘Readline’ to obtain the line to be read.

read -i TEXT Uses TEXT as the initial text for ‘Readline’.

read -n NCHARS Returns after reading NCHARS characters instead of waiting for a newline

(delimiter -d takes priority if found before NCHARS).

read -N NCHARS Returns only after reading exactly NCHARS characters, unless an EOF is

encountered or read times out (delimiters -d are ignored).

read -p PROMPT Outputs the string PROMPT and reads the input on the same line.

read -r Diss-allows backslashes to escape any characters.

read -s Does not echo the terminal input to screen (i.e. hides what is typed).

read -t TIMEOUT Times out and return failure if a complete line of input is not read within TIMEOUT

seconds (if timeout is exceeded the error code will be >128).

read -u FD Reads from a file descriptor (FD) instead of the standard input.

Example 1: Simple read with prompt

The script just asks for a name then prints a reply using the name given.

1 #! / bin /bash

2 read −p ”What ’ s your name? : ” name

3 echo ” He l lo $name ! ”

39

Example 2: Username and password

The script just asks for a username then a password. The password is hidden as it is typed. A check (line

5) is made and the result is printed.

1 #! / bin /bash

2 read −p ”Username : ” username

3 read −sp ”Password : ” password

4

5 i f [”$username” = ” root ”] && [”$password” = ”123456”] ; then

6 echo ” Login i s correct ”

7 else

8 echo ” Login i s incor rec t ”

9 f i

Note: this is not a secure way of checking credential!

12.10 Flow control

12.10.1 if

structure

1 i f [expression1] ; then

2 # . . . \

3 e l i f [expression2] ; then

4 # . . .

5 else

6 # . . .

7 f i

example

1 i f [$a −gt $b] ; then

2 echo $a ” greater than ” $b

3 e l i f [$a − l t $b] ; then

4 echo $a ” lesser than ” $b

5 else

6 echo $a ” equal to ” $b

7 f i

12.10.2 switch

structure

1 case s t r i ng in

2 str1)

3 # . . .

4 ; ;

5 str2)

6 # . . .

7 ; ;

8 *)

9 # . . .

10 ; ;

11 esac

example

1 case $str in

2 ’ john ’)

3 echo ” He l lo John”

4 ; ;

5 ’ dave ’)

6 echo ” He l lo Dave ! ”

7 ; ;

8 *)

9 echo ” He l lo . ”

10 ; ;

11 esac

40

12.10.3 for

structure

1 for var in l i s t ; do

2 # . . .

3 done

example

1 for i in ${NAMES} ; do

2 echo ” He l lo ${ i } ! ”

3 done

Alternatively there is a 3 expression variation available (similar to C++/Java and the likes):

structure

1 for ((EXP1 ; EXP2 ; EXP3)) ; do

2 # . . .

3 done

example

1 for ((i =0; i <=10; i++)) ; do

2 echo ”Hel lo , world ! ”

3 done

12.10.4 while

structure

1 while expression ; do

2 # . . .

3 done

4

example

1 while [$i − l t 10] ; do

2 echo ” i = : $i ”

3 i=$(($i + 1))

4 done

12.10.5 until

1 un t i l expression ; do

2 # . . .

3 done

12.10.6 shift (for positional parameter)

The shift command is used to move all values stored in the positional parameters ($1, $2, ... $n) to the left.

The value at position $0 remains unaffected.

For example, with the following values in store:

$1 = -a

$2 = doc1.txt

$3 = doc2.txt

Shifting the values will pop the first value at $1 and

move the rest 1 position left thus leaving us with:

$1 = doc1.txt

$2 = doc2.txt

It is possible to specify by how much the shift should

move the values by. Just add the parameter after the

command (i.e.: shift n).

Iterating through the parameters

1 while [”$1”] ; do

2 # . . .

3 sh i f t

4 done

41

12.11 Functions

Functions can have any number of parameters passed to themand, within, will see those as positional parameters

($1, $2, ... $n). It works just like the ones the shell script gets from the command line but locally to the function.

structure

Declaration

1 functionName () {

2 # . . .

3 }

Invocation

1 functionName [param1 param2 param3 . . .]

example

Declaration

1 pr i n t () {

2 echo ”$1”

3 }

Invocation

1 pr i n t $str

12.12 Debugging and Linting

To debug/lint your script the ShellCheck tool is available as a online version as well as local (available in most

major Distros repositories).

Otherwise there is the Bash debugger with a gdb-like command syntax.

13 Automating tasks

The ”Cron” tool enables tasks to be run on a schedule. Each user on a system has his/her own ”Cron” pool

meaning that if a user sets up a scheduled task the other users will not have it run in their profile.

The ”Cron” background daemon checks the /etc/crontab file as well as the directories /var/spool/cron/

and /etc/cron.*/ . It is not advisable to edit these directly/manually.

cmd opt details

crontab -e Edit cron jobs for current user (see note below).

crontab -l List all cron jobs for current user.

crontab -r Remove all cron jobs for current user.

To specify another user, the -u <username> option can be used.

Note: crontab editor

Editing cron jobs uses whatever editor is specified in the environment variables VISUAL or EDITOR . If

both of these are not set and the default (vi) is not installed there will be an error.

To set the environment variable check out ”6.2 Environment variables”.

42

https://www.shellcheck.net/
http://bashdb.sourceforge.net/

13.1 Editing tasks

Once inside the editor, tasks can be added/removed/modified at will. The

syntax is very simple:

m h d M w <username> /path/to/command <args>

Arguments (<args>) are optional and the username (<username>) is

not required for the current user.

Example 1: Run backup.sh every day at midnight

0 0 * * * backup.sh

Example 2: Run cleanup.sh mon, wed, and fridays at 11:30pm

Either 30 23 * * 1,3,5 cleanup.sh

or 30 23 * * mon,wed,fri cleanup.sh

Example 3: Run update.sh every 6 hours on weekdays

Either * */6 * * 1-5 update.sh

or * */6 * * mon-fri update.sh

Example 4: Reboot system every 6 hours

* */6 * * * /usr/bin/reboot

Scheduling variables

m Minute (0 → 59)

h Hour (0 → 23)

d Day (0 → 31)

M Month (0 → 12)

w Weekday (0 → 7)

Scheduling symbols

* All possible values for field

, List separator

- Range separator

/ Step separator

Syntax Shortcuts

@hourly → 0 * * * *

@midnight → 0 0 * * *

@daily → 0 0 * * *

@weekly → 0 0 * * 0

@monthly → 0 0 1 * *

@annually → 0 0 1 1 *

@yearly → 0 0 1 1 *

@reboot Every startup

13.2 Allow/Deny users to schedule tasks

It is possible to restrict the use of ”Cron” for users on a systemwith the /etc/cron.deny and /etc/cron.allow

files that act, receptively, like a blacklist and a whitelist of users.

Username can be added to these files to either deny or allow the use of the crontab command. By default only

cron.deny exits. If cron.allow is created then only the users listed in it can access the crontab command.

If both files are missing then only root has access.

To summarize the command access based on what file exists:

cron.deny cron.allow Access

× × Only root account.

× All users except those in cron.deny .

× Only users in cron.allow .

Only users in cron.allow .

14 Common scenarios

43

14.1 Formatting a USB stick

The table show the native compatibility of different filesystems. Most can be added with 3rd party packages to

work on other system though with a bit of research and work.

Filesystem Description Linux Mac OSX Windows

ext4 Linux native format × ×
FAT32 Old DOS/Windows format 18 ×
exFAT New-ish Windows format for external devices 19

First find out what device partition name is used for the stick (lsblk can show that info). For example: sdf1 .

1. Unmount the device: umount /dev/<device>

2. Format device:

ext4: sudo mkfs.ext4 /dev/<device>

FAT32: mkdosfs -F 32 -I /dev/<device>

exFAT: sudo mkfs.exfat /dev/<device>

3. Create a label:

ext4: sudo e2label /dev/<device> "<label>"

FAT32: fatlabel /dev/<device> <label> (uppercase, no spaces and 11 characters max)

exFAT: exfatlabel /dev/<device> '<label>' (15 characters max)

4. Make permissions universal:

ext4: sudo chmod 777 <path to mounted drive>

FAT32: N/A

exFAT: N/A

14.2 What is blocking umount?

This utility (lsof) is not always included in a Linux distribution so you may have to install it first.

$ lsof | grep <path to mounted device>

14.3 Remove a list of files

To remove a list of files, like for example the output of a find query, it needs to be piped via a xargs command:

$ find . -type f -name *.old -print0 | xargs -0 rm

18Needs the mtools package to be installed on Arch.

19Needs the exfat-utils package to be installed on Arch.

44

14.4 Piping lines from a file to a script

Example script script.sh :

1 #! / bin /bash

2 set −e #break on error

3

4 i f [−p /dev/ s td in] ; then

5 while IFS= read l i n e ; do

6 pr i n t f ”${ l i n e }\n”

7 done

8 f i

cat source.txt | ./script.sh

45

15 Other interesting applications

These will require installing but are listed there as they can be extremely useful for specific scenarios.

Package Description

imagemagick A complete swiss-army knife collection of CLI based image viewing/manipulation

programs (Magick++-config , MagickCore-config , MagickWand-config , animate ,

compare , composite , conjure , convert , display , identify , import , magick ,

magick-script , mogrify , montage , stream).

f3 Utilities to detect and repair counterfeit flash storage, i.e. thumb drives and memory cards

with less flash than advertised. (f3brew , f3fix , f3probe , f3read , f3write)

46

16 Change log

Date Section Topic(s) Change

11/02/20 Everything original publication -

17/02/20 5.2 Slicing and extracting head and tail add

17/02/20 5.5 Concatenate tac add

26/02/20 9.6 Monitoring iotop add

26/02/20 10.1 Device and local network information How to get list of services and their

status.

add

26/02/20 14.1 Formatting a USB stick FAT32 and exFAT, compatibility table add

10/03/20 4.1 Files and Directories pwd add

10/03/20 5.2 Slicing and extracting cut add

10/03/20 9.4 Disks blkid add

10/03/20 15 Other interesting applications imagemagick, f3 add

24/12/21 14.4 Piping lines from a file to a script Piping lines to a script add

24/12/21 14.3 Remove a list of files Find and remove resulting files add

47

Appendices

A More monitoring tools

There are more tools available that can be installed and go beyond the basics for monitoring. They can be

especially useful for system administrators and such. Here’s a curated selection:

htop

htop essentially supercharges and beautifies the native top

application. Its’ available inmost repositories so can be installed

via your distro’s package manager.

iftop

“iftop does for network usage what top(1) does for CPU usage.

It listens to network traffic on a named interface and displays a

table of current bandwidth usage by pairs of hosts.”

iptraf

“iptraf is a console-based network statistics utility for Linux. It

gathers a variety of figures such as TCP connection packet and

byte counts, interface statistics and activity indicators, TCP/UDP

traffic breakdowns, and LAN station packet and byte counts.”

glances

“Glances is a cross-platform system monitoring tool written in

Python.”

48

https://hisham.hm/htop/
http://www.ex-parrot.com/pdw/iftop/
http://iptraf.seul.org/
https://nicolargo.github.io/glances/

B Linux directory structure

/...Root of the filesystem.

bin....................................Essential command binaries that need to be available in single user mode.

boot...Boot loader files.

dev..Device files

etc..Host-specific system-wide configuration files

opt...Configuration files for packages in /opt .

X11.. [Optional] Configuration for the X Window system.

sgml...[Optional] Configuration for SGML.

xml..[Optional] Configuration for XML.

home..Users’ home directories

lib...Libraries needed by the binaries in /bin and /sbin .

lib64...64bit libraries needed by the binaries in /bin and /sbin .

media...Mount points for removable media.

mnt...Temporarily mounted filesystems.

opt...Optional application software packages.

proc..Virtual filesystem providing process and kernel information as files.

root...Home directory for the root user.

run...................................Run-time variable data (Info about the running system since the last boot).

sbin..Essential system binaries

srv...Site-specific data served by this system (i.e. when used as a server).

sys...System information about devices, drivers, and some kernel features.

tmp...Temporary files (volatile).

usr..Most user utilities and applications are here (read-only).

bin...User commands.

include...Header files included by C programs.

lib..Libraries.

local..Local hierarchy (empty after main installation)

sbin..Non-vital system binaries.

share...Architecture-independent data.

lib64...[Optional] 64bit libraries.

src..[Optional] Source code.

var...................................Variable files (whose content is expected to change during system runtime.

cache...Application cache data.

lib...Variable state information.

local..Variable data for /usr/local .

lock..Lock files.

log...Log files and directories.

opt...Variable data for /opt .

run..Data relevant to running processes.

spool..Application spool data.

tmp...Temporary files preserved between system reboots.

49

For amore detailed look check out the FilesystemHierarchy Standard site for the official standards documentation.

Alternatively, the Linux Programmer’s Manual also provides more granular insights.

C Linux Access Groups

Mostly taken from the excellent Arch WIKI (Users & Groups).

C.1 User

Group Affected files Purpose

adm Administration group, commonly used to give read access to

protected logs (inc. full read access to journal files).

ftp /srv/ftp/ Access to files served by FTP servers.

games /var/games Access to some game software.

http /srv/http/ Access to files served by HTTP servers.

log Access to log files in /var/log/ created by syslog-ng.

rfkill /dev/rfkill Right to control wireless devices power state (used by

rfkill).

sys Right to administer printers in CUPS.

systemd-journal /var/log/journal/* Can be used to provide read-only access to the systemd logs,

as an alternative to adm and wheel. Otherwise, only user

generated messages are displayed.

uucp /dev/ttyS[0-9]+,

/dev/tts/[0-9]+,

/dev/ttyUSB[0-9]+,

/dev/ttyACM[0-9]+,

/dev/rfcomm[0-9]+

RS-232 serial ports and devices connected to them.

wheel Administration group, commonly used to give privileges to

perform administrative actions. It has full read access to

journal files and the right to administer printers in CUPS.

Can also be used to give access to the sudo and su utilities

(neither uses it by default).

50

http://www.pathname.com/fhs/
http://man7.org/linux/man-pages/man7/hier.7.html
https://wiki.archlinux.org/index.php/Users_and_groups#Group_list

C.2 System

Group Affected files Purpose

audio* /dev/audio, /dev/snd/*,

/dev/rtc0

Direct access to sound hardware, for all sessions. It is still

required to make ALSA and OSS work in remote sessions. Also

used in JACK (low latency audio) to give users realtime processing

permissions.

dbus used internally by dbus (the GNU message bus system).

disk* /dev/sd[a-z][1-9] Access to block devices not affected by other groups such as

optical, floppy, and storage.

floppy* /dev/fd[0-9] Access to floppy drives.

input* /dev/input/event[0-9]*,

/dev/input/mouse[0-9]*

Access to input devices (introduced in systemd 215).

kmem /dev/port, /dev/mem,

/dev/kmem

kvm* /dev/kvm Access to virtual machines using KVM.

locate /usr/bin/locate,

/var/lib/locate,

/var/lib/mlocate,

/var/lib/slocate

See Locate.

lp /dev/lp[0-9]*,

/dev/parport[0-9]*

Access to parallel port devices (printers and others).

mail /usr/bin/mail

nobody Unprivileged group.

optical* /dev/sr[0-9],

/dev/sg[0-9]

Access to optical devices such as CD and DVD drives.

proc /proc/pid/ A group authorized to learn processes information otherwise

prohibited by hidepid= mount option of the proc filesystem. The

group must be explicitly set with the gid= mount option.

root /* Complete system administration and control (root, admin).

scanner* /var/lock/sane Access to scanner hardware.

smmsp sendmail group.

storage* Access to removable drives such as USB hard drives, flash/jump

drives, MP3 players; enables the user to mount storage devices.

tty /dev/tty, /dev/vcc,

/dev/vc, /dev/ptmx

utmp /run/utmp,

/var/log/btmp,

/var/log/wtmp

video* /dev/fb/0,

/dev/misc/agpgart

Access to video capture devices, 2D/3D hardware acceleration,

framebuffer (X can be used without belonging to this group).

* In older systems (prior tosystemd) users had to bemanually added to these groups to access the corresponding

51

https://pagure.io/mlocate

devices. This has been depreciated in favour of udev and marking the devices with a uaccess tag and logind

assigning the permissions to users dynamically via ACLs according to which session is currently active. Some

exceptions exist for newer system setups.

52

D Common Linux exit codes

Code Description

0 Success

1 Operation not permitted

2 No such file or directory

3 No such process

4 Interrupted system call

5 Input/output error

6 No such device or address

7 Argument list too long

8 Exec format error

9 Bad file descriptor

10 No child processes

11 Resource temporarily unavailable

12 Cannot allocate memory

13 Permission denied

14 Bad address

15 Block device required

16 Device or resource busy

17 File exists

18 Invalid cross-device link

19 No such device

20 Not a directory

21 Is a directory

22 Invalid argument

23 Too many open files in system

24 Too many open files

25 Inappropriate ioctl for device

26 Text file busy

27 File too large

28 No space left on device

29 Illegal seek

30 Read-only file system

31 Too many links

32 Broken pipe

33 Numerical argument out of domain

34 Numerical result out of range

35 Resource deadlock avoided

36 File name too long

37 No locks available

38 Function not implemented

39 Directory not empty

Code Description

40 Too many levels of symbolic links

42 No message of desired type

43 Identifier removed

44 Channel number out of range

45 Level 2 not synchronized

46 Level 3 halted

47 Level 3 reset

48 Link number out of range

49 Protocol driver not attached

50 No CSI structure available

51 Level 2 halted

52 Invalid exchange

53 Invalid request descriptor

54 Exchange full

55 No anode

56 Invalid request code

57 Invalid slot

59 Bad font file format

60 Device not a stream

61 No data available

62 Timer expired

63 Out of streams resources

64 Machine is not on the network

65 Package not installed

66 Object is remote

67 Link has been severed

68 Advertise error

69 Srmount error

70 Communication error on send

71 Protocol error

72 Multihop attempted

73 RFS specific error

74 Bad message

75 Value too large for defined data type

76 Name not unique on network

77 File descriptor in bad state

78 Remote address changed

79 Can not access a needed shared library

80 Accessing a corrupted shared library

81 .lib section in a.out corrupted

53

Code Description

82 Attempting to link in too many shared

libraries

83 Cannot exec a shared library directly

84 Invalid or incomplete multibyte or wide

character

85 Interrupted system call should be restarted

86 Streams pipe error

87 Too many users

88 Socket operation on non-socket

89 Destination address required

90 Message too long

91 Protocol wrong type for socket

92 Protocol not available

93 Protocol not supported

94 Socket type not supported

95 Operation not supported

96 Protocol family not supported

97 Address family not supported by protocol

98 Address already in use

99 Cannot assign requested address

100 Network is down

101 Network is unreachable

102 Network dropped connection on reset

103 Software caused connection abort

104 Connection reset by peer

105 No buffer space available

106 Transport endpoint is already connected

Code Description

107 Transport endpoint is not connected

108 Cannot send after transport endpoint

shutdown

109 Too many references

110 Connection timed out

111 Connection refused

112 Host is down

113 No route to host

114 Operation already in progress

115 Operation now in progress

116 Stale file handle

117 Structure needs cleaning

118 Not a XENIX named type file

119 No XENIX semaphores available

120 Is a named type file

121 Remote I/O error

122 Disk quota exceeded

123 No medium found

125 Operation cancelled

126 Required key not available

127 Key has expired

128 Key has been revoked

129 Key was rejected by service

130 Owner died

131 State not recoverable

132 Operation not possible due to RF-kill

133 Memory page has hardware error

Taken from nixCraft (25 Jan 2020).

54

https://www.cyberciti.biz/faq/linux-bash-exit-status-set-exit-statusin-bash/

	Nomenclature
	Introduction
	Getting help

	Useful Concepts and Tooling
	Command history
	Command Redo/Undo/Edit
	Piping (`|')
	Chaining (`&&')

	Basic Operations
	Files and Directories
	Getting information
	Copying, Moving and Renaming
	Searching
	Comparison

	Text manipulation
	Filters
	awk
	grep
	sed

	Slicing and extracting
	head and tail
	cut

	Word Count
	Sort
	Concatenate

	System variables
	Syntax
	Environment variables
	Persistence

	Shell variables

	Maths in the terminal
	Evaluating expressions (expr)
	Floating point calculations (bc)
	Prime factors (factor)
	Bash operators

	Users and Groups
	Users
	Groups
	Switch User (a.k.a. Substitute User)
	Running as root (Sudoers)
	File and Directory permission
	Type and security descriptor
	Changing permissions
	Changing ownership
	Access Control Lists (ACL)

	System and resources
	Kernel
	Users
	Processes
	Disks
	Network and ports
	Monitoring

	Networking
	Device and local network information
	Remote connectivity and troubleshooting
	Downloading files from the internet
	Secure Shell (SSH)
	Connecting to a remote SSH server
	Running remote commands/scripts
	Copying files
	Starting the server daemon
	SSH Keys
	Secure File Transfer Protocol (SFTP)

	Backup
	Commonly used options
	Local backups
	Remote backups

	Shell Scripting
	The script file
	Bash special parameters
	Exit codes
	Conditional constructs
	The test command and its operators
	Numeric operators
	String operators
	File comparison operators
	File state operators

	Variables
	Quotation marks and Escape character
	Back quotes

	Printing
	echo
	printf

	User input
	Flow control
	if
	switch
	for
	while
	until
	shift (for positional parameter)

	Functions
	Debugging and Linting

	Automating tasks
	Editing tasks
	Allow/Deny users to schedule tasks

	Common scenarios
	Formatting a USB stick
	What is blocking umount?
	Remove a list of files
	Piping lines from a file to a script

	Other interesting applications
	Change log
	Appendices
	More monitoring tools
	Linux directory structure
	Linux Access Groups
	User
	System

	Common Linux exit codes

