23/02/2020 By e An7ar3s

CMake Variable Injection
2302020 & s

Contents
1 Introduction 2
2 Skeleton C++ code for injection 2

3 Getting CMake to generate from skeleton code 3

https://an7ar35.bitbucket.io/

1 Introduction

Sometimes it's useful to inject CMake variables into the source code such as in the case of printing
the project versions and do conditional builds.

Aside from CMake’s internal variables, more can be created by using the set(...) command in the
CMakelList. txt file. For example:

//Interal CMake variable assignment for project name and version
project (AwesomeProject VERSION 1.0.5)
//Custom variable declaration for the project’s author

set (PROJECT_AUTHOR)
//Internal CMake variable assignment for the project’s URL
set (PROJECT_HOMEPAGE_URL)

The example of the versioning will be used to demonstrate the concept.

2 Skeleton C++ code for injection

We need to create some c++ skeleton code from which CMake will generate the actual code with the

variables inserted from.
Note

The skeleton file is not included in the project as it is only used by CMake to generate the target
file we actually want.

To insert a CMake variable just use the @VARIABLE_NAME@ syntax. Let’s create code for our declared
variables above...
src/cmake_variables.h

#ifndef AWESOMEPROJECT_CMAKE_VARIABLES_H
#define AWESOMEPROJECT_CMAKE_VARIABLES_H

#include <string>
namespace awesome_project::cmake {

inline static const std::string AUTHOR
inline static const std::string URL

inline static const std::string VERSION ;

static const unsigned VERSION_MAJOR @PROJECT_VERSION_MAJOR@;
static const unsigned VERSION_MINOR = @PROJECT_VERSION_MINOR@;
static const unsigned VERSION_PATCH = @PROJECT_VERSION_PATCH@;

#endif //AWESOMEPROJECT_CMAKE_VARIABLES_H

3 Getting CMake to generate from skeleton code

First, configure_file(...) is used to indicate what file to take as template and where to output the
generated code to. Here our src/cmake_variable.h header file is used and the output is set to the
generated/ directory inside CMAKE_BINARY_DIR. The latter is Usually set as cmake_build_debug/
or cmake_build_release/ by default depending on the build type.

Inside CMakeList. txt

configure_file(src/cmake_variables.h ${CMAKE_BINARY_DIR}/generated/project_version.h)

include_directories(${CMAKE_BINARY_DIR}/generated/)

Reload the CMakelList. txt file to generate the file.
Note

Including the target directory for the generated file is required in order to be able to use the
variables in the project.

The generated output file will then be:
${CMAKE_BINARY_DIR}/generated/project_version.h

#ifndef AWESOMEPROJECT_CMAKE_VARIABLES_H
#define AWESOMEPROJECT_CMAKE_VARIABLES_H

#include <string>

namespace awesome_project::cmake {
inline static const std::string AUTHOR
inline static const std::string URL
inline static const std::string VERSION
static const unsigned VERSION_MAJOR
static const unsigned VERSION_MINOR
static const unsigned VERSION_PATCH

#endif //AWESOMEPROJECT_CMAKE_VARIABLES_H

	Introduction
	Skeleton C++ code for injection
	Getting CMake to generate from skeleton code

