
RaspberryPi Git Server

25/03/2020 By An7ar35

Contents

1 Introduction 3

2 Hardware 3

3 System setup 4

3.1 Arch Linux . 4

3.1.1 Installing Arch . 4

3.1.2 Updating Arch . 4

3.2 Getting the TFT panel to work . 5

3.3 Assigning the shutdown functionality to a TFT panel button 5

3.4 sudo . 6

3.5 Users and Groups . 6

3.6 RSA credentials for SSH client login . 6

3.7 Permanent USB storage . 7

4 Git 8

4.1 Basic Client-Server configuration . 8

4.2 Unifying remotes into 1 call . 9

5 Software 10

5.1 Some button testing with python . 10

5.2 Button listener in Python using the sysfs ABI . 11

5.3 Other attempts and failures/problems encountered . 11

6 Sources and Further Reading 13

6.1 Documentation . 13

6.2 Posts & Articles . 13

6.3 Code Repositories . 13

Appendices 14

A Conky configuration . 14

B Adding SSH keys to Web-based repositories . 16

B.1 Github . 16

B.2 Bitbucket . 16

C Python programs . 18

1

https://an7ar35.bitbucket.io/

C.1 Button test program . 18

C.2 Button listener . 18

D Memory mapping (RaspberryPi Model B v2.0) . 20

E Developing with C/C++ . 21

F C based GPIO libraries installation guides . 22

F.1 libgpiod . 22

F.2 pigpio . 22

F.3 wiringpi . 22

2

1 Introduction

The idea with this little project is to get a localised networked Git server to mirror existing repositories

but also enable some backup/synchronisation of other text based content (dot files, TODO lists, etc...).

Text based TODO list are simple to maintain and can easily be managed in Git. It’s also a bonus that

with a bit of Conky magic, these can be displayed on the desktop in Linux. If you are interested, my

basic configuration is in the appendix A.

Dot files are also a great candidate for version control. This only hiccup is that the important ones

(for me anyway) are located in the root of the user’s directory so initiating a git repo there would not

be appropriate. It is better to create a dedicated directory that houses all of these files and then to

just create symbolic links (ln -s <source> <target>) to them.

With all that said, let’s get on with it...

2 Hardware

The rather dated RaspberryPi, TFT assembly and case were

bought years ago for a completely different project that never saw

any ground so the hardware laid in a box gathering dust to my

great shame... Well, no longer! It shan’t be a testament to un-lived

silicon-based potential for long!

To note that the model B is running an ARM11 based 32bit CPU

(with ARM6Z instruction sets) running at a casual 700Mhz. The

board is so ‘vintage’ (released in Q2 of 2012) it is not featured on

the official site’s shop any more.

Here’s the hardware list:

• 1 × RaspberryPi B

• 1 × Adafruit PiTFT 2.8” Resistive Touchscreen Display

• 1 × Piromoni PiTFT case

• 1 × 5V PSU salvaged from the box of forgotten adapters

• 1 × 32Gb SD card which is admittedly overkill but that’s all

I could find in my box of loose computer crap

• 1 × 128Gb USB stick

• 1 × ethernet patch cable (something that supports at least

10/100 Mbit/s - either cat 5 or 6 is fine)

3

https://github.com/brndnmtthws/conky
https://www.raspberrypi.org/
https://www.adafruit.com/product/1601

3 System setup

3.1 Arch Linux

I chose the Arch Linux variant for the RaspberryPi out of familiarity mostly as well as wanting a

lightweight deployment. I’m not running on bleeding edge hardware after all!

3.1.1 Installing Arch

First things first; the Arch Linux zipped image need to be acquired [link].

Then it’s just a matter of going through the instructions found on the Arch Linux ARM6 installation

guide page.

In summary; the SD card is to be partitioned as such:

1. 100Mb ‘W95 FAT32 (LBA)’ boot partition (/boot)

2. rest of the space as a ‘ext4’ root partition (/)

Then the image needs to be extracted using bsdtar onto the root partition and, finally, the files in

/boot/* must be moved to the boot partition.

Once all that is done the Pi can be booted up with the SD card whilst connected to the LAN and we can

login remotely with SSH: ssh alarm@192.168.X.X (password: ”alarm”). You’ll need to know the IP

address of the Pi. Routers will have in their administration interface a way to see what devices are

connected to them and what IP are assigned for those.

3.1.2 Updating Arch

To get all the system updates, access to the root account is needed: su (password: ”root”)

Now the pacman keyring can be initialized, the package list downloaded and the system updated:

$ pacman-key --init

$ pacman-key --populate archlinuxarm

$ pacman -Syyu

Next on the list, once the updates are done, is the raspberry firmwares:

$ pacman -S raspberrypi-firmware

Some extras while we’re here:

$ pacman -S htop wget usbutils gpio-utils wiringpi

...and reboot (reboot).

4

http://os.archlinuxarm.org/os/ArchLinuxARM-rpi-latest.tar.gz
https://archlinuxarm.org/platforms/armv6/raspberry-pi
https://archlinuxarm.org/platforms/armv6/raspberry-pi

3.2 Getting the TFT panel to work

Now the base system done, displaying stuff to the little screen

would be a nice addition since it’s there. Unfortunately, there isn’t

a whole lot of updated Arch-specific instructions in that subject

but once you finally get enough pieces of the puzzle from various

forums and articles, it is not actually that bad.

It needs to be noted that ArchPi for ARM6 (32bit) includes all the

kernel overlays normally found in the official RaspberryPi distro

Raspbian. These enable all the board’s specific functionalities.

Make sure you are on the root account for all that (su).

$ modprobe -a fbtft

Then edit the /boot/config.txt file (use nano) and add the following:

1 dtover lay=p i t f t28−r e s i s t i v e , rotate=90,speed=64000000, fps=30
2 dtparam=audio=on

Lines 2 just enables the audio. As we are already in there, might as well...

To get the console to show on the display the /boot/cmdline.txt file needs to be edited and the

following added to the end of the line:

1 fbcon=map:10 fbcon=font : VGA8x8

Finally, reboot and the TFT panel should come to life. If you switch to root you can output text to the

TFT console with:

$ echo "Hello world!" > /dev/tty1

3.3 Assigning the shutdown functionality to a TFT panel button

A little button to safely shutdown the system thus avoiding data

corruption and even premature drive death can be quite useful...

The other alternative is to trigger the shutdown from within the

system remotely via SSH which is not always practical.

As with the TFT display, make sure you are on the root account.

In /boot/config.txt add the line:

1 dtover lay=gpio−shutdown , gpio_pin=23

Pin # 23 is located under the bottom-left button on that PiTFT display. That leaves us with another 3

buttons to play around with later.

5

https://www.raspberrypi.org/downloads/raspbian/

After a reboot the button should now trigger a shutdown-halt after which it will be safe to pull the

power out from the device.

3.4 sudo

sudo will be useful to have users outside of root be able to run commands requiring elevated privileges.

Let’s install that:

$ pacman -S sudo

Next some light editing of the configuration is required:

$ visudo

Find the line:

1 # %sudo ALL=(ALL) ALL

...and uncomment it to enable sudo access to any user in the ”sudo” group:

1 %sudo ALL=(ALL) ALL

Now to actually create that ”sudo” group:

$ groupadd sudo

3.5 Users and Groups

Just for the sake of mild security, the default alarm user needs to be replaced by something else.

Since I’d like that user to have sudo privileges, it also needs to be added to the ”sudo” group.

Here are the steps to make a new user ” pi ”:

$ useradd -m -g users -G sudo -s /bin/bash pi

$ passwd pi

Reboot (reboot) and login via SSH with the new user: ssh pi@<ip address>

Finally, to remove the old ”alarm” account, change back into the root account (su) and:

$ userdel -r alarm

3.6 RSA credentials for SSH client login

So that the client(s) systems on the LAN can connect to the Raspberry Pi server without having to put

a password every time SSH keys need to be generated for each.

The steps for each user@client are:

1. Generate keys: ssh-keygen -t rsa

6

2. Copy the public key to the ” pi ” user on the Raspberry Pi: ssh-copy-id pi@<ip address>

After that it is possible to remove the SSH passworded logins option altogether. To do that, use an

editor to open /etc/ssh/sshd_config on the RaspberryPi and change/uncomment the following

options as:

1 PasswordAuthentication no

2 ChallengeResponseAuthentication no

3 UsePAM no

3.7 Permanent USB storage

To treat the USB stick as a permanent storage device, it

needs to be automatically mounted at boot.

Once plugged-in, the device name given by the kernel

needs to be found. lsblk can help with that (see right).

From that, it’s clear that the device name is sdf1 . Next, the UUID and filesystem type is needed (it

needs to be done in root to work):

$ blkid /dev/sdf1

A mount point needs to be created and its permission set so that the new user has ownership:

$ mkdir /mnt/storage

$ chown pi /mnt/storage

Note

In my case I had already formatted the USB stick with an ext4 filesystem. As it is a Linux

filesystem I don’t need to install any packages to be able to read/write to it.

Now that all the needed information is gathered, the USB storage can be added to the /etc/fstab

file. All that is required is the UUID, the mount point, the filesystem, and various options flags:

On the next reboot the USB storage should automatically be mounted on /mnt/storage .

7

4 Git

4.1 Basic Client-Server configuration

First, Git must me installed on the RaspberryPi:

$ sudo pacman -S git

Then, Git repositories can be created:

$ mkdir /mnt/storage/git-repos/<repo name>

$ cd /mnt/storage/git-repos/<repo name>

$ git init --bare

From thereon, the RaspberryPi Git server will be designated as ” lan-git ” on the clients so as to be

representative.

Now on the client machine from the existing ” <repo name> ” directory:

$ git remote add lan-git ssh://pi@<ip address>:/mnt/storage/git-repos/<repo

name>

To check the details have been added correctly: git remote -v

Ooops, ”fatal error”

If an error where the the remote directory could not be read/seen as a git repository make sure

that:

• you have access rights,

• the repository exists on the Git server,

• the remote access details are correct (ip address?),

• the remote path is correct.

If there is a typo, the remote repository details can be removed from the client’s git repository by:

git remote rm lan-git

All we need to do now is to upload the repository’s content to the RaspberryPi server’s remote git

folder:

Client repository with an upstream already defined

To push the content (inc. all branches) to lan-git :

$ git push lan-git --all

8

Client repository without an upstream defined

If the repository on the client is bran-new then lan-git must be specified as the default upstream

remote:

$ git push --set-upstream lan-git --all

4.2 Unifying remotes into 1 call

If there are multiple remote repositories to which the version controlled content is pushed to, a

”catch-all” designation might be appropriate.

For example, let’s say we have 2 remotes. Pushing to all of themwould require a call to git push ...

2 times.

In the repository’s folder there is a sub-directory called ”.git/”. Within it the config file for the

repository resides.

Just add a section named ” [remote "all"] ” and all the remote repositories’ URLs. As an example:

1 [remote ” a l l ”]

2 ur l = https : / / user@domain/path/ to / repos i tory . g i t

3 ur l = ssh : / / user@ip−address : / path/ to / repos i tory

Alternatively, in the case where only 1 of the 2 repository should be pulled from but both can be

pushed to, the [remote "origin"] section can be edited as such instead:

1 [remote ” o r i g i n ”]

2 ur l = https : / / user@domain/path/ to / repos i tory . g i t

3 pushurl = ssh : / / user@ip−address : / path/ to / repos i tory
4 fe tch = +re f s /heads /* : r e f s /remotes/ o r i g i n /*

9

5 Software

5.1 Some button testing with python

Developing with Python3

For an easier time programming with the RaspberryPi, Python is a great starting option for any

budding developer out there. Just install it and the needed libraries with:

pacman -S python3 python-pip

pip3 install gpiozero (new library)

pip3 install rpi.gpio (old, depreciated library)

In order to check the buttons were working a small python program was written. With this it became

clear that something was amiss... Whilst the second (#22) and fourth (#18) button on the TFT board

worked as expected, the third (#21) one didn’t register.

Alright then, I checked the soldering more closely and everything seemed OK on the surface. Next,

the multimeter to check the contacts were actually fine. Again, everything tested as working.

Mystery mystery mystery...

Next was checking the trace routing and on what

pin it landed back on the Raspberry Pi with the help

of the TFT tracing (see below) and the pinout

output (see right).

It turns out that the TFT is eithermislabelled or was

designed for the first version of the Raspberry Pi.

The actual pin it lands on is #13 (so GPIO #27)!

Adjustment to the testing program (see appendix C.1) confirmed that the pin was indeed GPIO #27.

10

5.2 Button listener in Python using the sysfs ABI

The test script can be modified to now trigger more useful things than just messages of what buttons

are being pressed. One particular use case is switching the backlight on/off for some power saving.

One way to do just that is to access to the Linux GPIO sysfs Application Binary Interface (ABI).

Although officially depreciated in favour of character devices, it is still available for the sake of backwards

compatibility.

The backlight state can be checked and controlled with:

/sys/class/backlight/soc:backlight/bl_power .

0 is ”on” and 1 is ”off” so the binary value can be both read andwritten to by opening a file descriptor

since in Linux everything is a file of some type. With this in mind the code for switching the backlight

can be as follows:

1 class Back l ight :

2 ON: F ina l = b ’0 ’

3 OFF : F i na l = b ’1 ’

4

5 def swi tchBack l ight () :

6 fd = os . open (”/sys/ c lass / back l ight /soc : back l ight /bl_power” , os .O_RDWR)

7 state = os . read (fd , 1)

8

9 i f state == Back l ight .ON:

10 os . wr i te (fd , Back l ight . OFF)

11 else :

12 os . wr i te (fd , Back l ight .ON)

13

14 os . c lose (fd)

The second button (GPIO #22) can be assigned this functionality. As for the other remaining 2, some

placeholders can be left for the time where they might be useful (see appendix C.2 for the code).

5.3 Other attempts and failures/problems encountered

The simplest approach is just to avoid using GPIO libraries (see appendix F for some of these) and

use the old school sysfs interface.

In my case the interface, although existent, stopped updating values for.. well I don’t exactly know.

Earlier on on the first install it checked out and then, after later updates, it stopped tracking values.

This led me to a long and frustrating time experimenting with various approaches to accessing the

GPIO information to no avail...

To summarise the things tried:

1. Direct from the shell access to the sysfs ABI,

11

2. A number of variation of the above using poll in C, setting up interrupt requests on the pins,

and so on...

3. Using the libgpiod tools that come with the library to test events on pins (which also failed to

detect value changes either),

4. Direct register access using mmap on both /dev/mem and /dev/gpiomem to access the GPIO

register as a superuser (see appendix D). Looping on the all register pin values whilst pressing

the buttons still failed to show changes.

It is important to mention that the python script still works despite everything else failing which is odd

given that I reproduced the register access code from the gpiozero library1 in C and got no value

change on the button presses. Given more time and a second 64bit board to test with a newer kernel

I would look into this problem in more details.

Theremight be an issuewith theway the TFT board interferes with the button presses but that wouldn’t

explain the python script still working.

In any case this is where I get off the ride for the time being as the primary goal of this project is already

fulfilled after all (Git server) even if there’s a sour note to all this... I must have missed something...

1https://github.com/gpiozero/gpiozero/blob/master/gpiozero/pins/native.py

12

https://github.com/gpiozero/gpiozero/blob/master/gpiozero/pins/native.py

6 Sources and Further Reading

6.1 Documentation

• Arch Linux ARM installation guide

• Adafruit PiTFT 28 inch resistive touchscreen display installation guide PDF

• Linux kernel documentation: GPIO

• Linux kernel documentation: sysfs

• Direct register access in C

6.2 Posts & Articles

• An Introduction to chardev GPIO and Libgpiod on the Raspberry PI (Craig Peacock, 16 Oct 2018)

• GPIO Programming: Using the sysfs Interface (Jeff Tranter, 10 Jul 2019)

• How to Control GPIO Hardware from C or C++ (Jeff Tranter, 14 Aug 2019)

• Writting a Linux Kernel Module (Derek Molloy, 14 April 2015) - Parts 1, 2 and 3

6.3 Code Repositories

• Basic skeleton of a linux daemon written in C (Pascal Werkl)

• libgpiod library (README)

• pigpio library

13

https://archlinuxarm.org/platforms/armv6/raspberry-pi
https://www.kernel.org/doc/Documentation/gpio/gpio.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://elinux.org/RPi_GPIO_Code_Samples#Direct_register_access
https://www.beyondlogic.org/an-introduction-to-chardev-gpio-and-libgpiod-on-the-raspberry-pi/
https://www.ics.com/blog/gpio-programming-using-sysfs-interface
https://www.ics.com/blog/how-control-gpio-hardware-c-or-c
http://derekmolloy.ie/writing-a-linux-kernel-module-part-1-introduction/
http://derekmolloy.ie/writing-a-linux-kernel-module-part-2-a-character-device/
http://derekmolloy.ie/kernel-gpio-programming-buttons-and-leds/
https://github.com/pasce/daemon-skeleton-linux-c
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/
https://kernel.googlesource.com/pub/scm/libs/libgpiod/libgpiod/+/v0.2.x/README.md
https://github.com/joan2937/pigpio

Appendices

A Conky configuration

This configuration just gets some text files to display on the desktop without any bells or whistle.

Side note: KDE Plasma5

To have Conky show up on all virtual desktops start it with:

$ kstart5 --windowclass normal --alldesktops conky

1 # Create own window instead of using desktop

2 own_window

3 # own_window_class conky−semi
4 own_window_class normal

5 own_window yes

6 own_window_type normal

7 own_window_transparent yes

8 own_window_hints undecorated , below , skip_taskbar , skip_pager

9 own_window_argb_visual yes

10 own_window_argb_value 0

11

12 # Use double bu f fe r ing (reduces f l i c k e r , may not work fo r everyone)

13 double_buf fer yes

14

15 # f i d d l e with window

16 use_spacer none

17

18 # Update i n t e r v a l in seconds

19 update_ interva l 3.0

20

21 # Minimum s i ze of tex t area

22 # minimum_size 800 600

23

24 # Draw shades?

25 draw_shades no

26

27 # Text

28 use_xf t

29 x f ta lpha 1

30 draw_outl ine no

31 draw_borders no

32 font Hack : s i ze=11

33

34 # Border/margins

35 st ipp led_borders 2

14

36 border_inner_margin 10

37

38 # Defau l t co lors and also border colors , grey90 == #e5e5e5

39 de fau l t _co lo r grey

40

41 own_window_transparent yes

42

43 # Text alignment , other poss ib le values are commented

44 #alignment t op_ l e f t

45 alignment top_r ight

46 #alignment bottom_lef t

47 #alignment bottom_right

48

49 # Gap between borders of screen and tex t

50 gap_x 40

51 gap_y 20

52

53 # s t u f f a f t e r ’TEXT ’ w i l l be formatted on screen

54 TEXT

55 ${ color cyan}TODO:

56

57 ${ color white }${ exec i 30 cat ~/gi t−repos/TODOs/conky/TODO. t x t }
58

59 ${ color cyan} Pro jects :

60

61 ${ color white }${ exec i 30 cat ~/gi t−repos/TODOs/conky/PROJECTS . t x t }

15

B Adding SSH keys to Web-based repositories

To use any cloud hosted repositories (GitHub/Bitbucket/Gitlab/etc...) an SSH key will need to be

generated on the RaspberryPi server:

$ ssh-keygen -t rsa

The content of the ~/.ssh/id_rsa.pub file usually needs to be copied onto a field in these cloud

hosted Git sites.

B.1 Github

In the Settings page, there is an SSH and GPG keys entry where keys can be added.

B.2 Bitbucket

In the Bitbucket settings page, there is an SSH Keys entry where keys can be added.

16

17

C Python programs

C.1 Button test program
code/pi–button–test.py

1 # Pi−Buttons tes t program

2 # By An7ar35 (https : / / an7ar35 . b i tbucket . io)

3

4 from gpiozero import Button , PinNonPhysical

5

6 PinNonPhysical . pr intWarnings = False #This i s not r e a l l y working

7

8 def pressedB2 () :

9 pr in t (” button 2 was pressed”)

10

11 def pressedB3 () :

12 pr in t (” button 3 was pressed”)

13

14 def pressedB4 () :

15 pr in t (” button 4 was pressed”)

16

17

18 button2 = Button (22)

19 button3 = Button (27) #Marked as #21 on TFT board

20 button4 = Button (18)

21

22 while (True) :

23 button2 . when_pressed = pressedB2

24 button3 . when_pressed = pressedB3

25 button4 . when_pressed = pressedB4

C.2 Button listener
code/pi–buttons.py

1 #! / usr / bin /env python3

2

3 # Pi−Buttons l i s t e n e r program

4 # By An7ar35 (https : / / an7ar35 . b i tbucket . io)

5

6 from gpiozero import Button , PinNonPhysical

7 from typing import F ina l

8 from time import sleep

9 import os

10

11 PinNonPhysical . pr intWarnings = False

12

13 DELAY_TIME : F i na l = 60

14

15 class Back l ight :

16 ON: F ina l = b ’0 ’

18

17 OFF : F i na l = b ’1 ’

18

19 t ry :

20 button2 : F i na l = Button (22)

21 button3 : F i na l = Button (27) #Marked as #21 on TFT board

22 button4 : F i na l = Button (18)

23 except PinNonPhysical :

24 pr in t (” PinNonPhysical issue ”)

25

26 def swi tchBack l ight () :

27 fd = os . open (”/sys/ c lass / back l ight /soc : back l ight /bl_power” , os .O_RDWR)

28 state = os . read (fd , 1)

29

30 i f state == Back l ight .ON:

31 os . wr i te (fd , Back l ight . OFF)

32 else :

33 os . wr i te (fd , Back l ight .ON)

34

35 os . c lose (fd)

36

37 def pressedB3 () :

38 pr in t (” button 3 i s unassigned”)

39

40 def pressedB4 () :

41 pr in t (” button 4 i s unassigned”)

42

43 def main () :

44 t ry :

45 while (True) :

46 button2 . when_pressed = swi tchBack l ight

47 button3 . when_pressed = pressedB3

48 button4 . when_pressed = pressedB4

49 except Exception :

50 pr in t (”Problem s ta r t i ng . . . t r y ing again in ” , DELAY_TIME / 60 , ”mns . ”)

51 sleep (DELAY_TIME)

52

53 main ()

19

D Memory mapping (RaspberryPi Model B v2.0)

Using sudo cat /proc/iomem :

00000000-1bffffff : System RAM

00008000-00ffffff : Kernel code

01100000-012abfcf : Kernel data

20006000-20006fff : dwc_otg

20007000-20007eff : dma@7e007000

2000a000-2000a023 : watchdog@7e100000

2000b840-2000b87b : mailbox@7e00b840

2000b880-2000b8bf : mailbox@7e00b880

20100000-20100113 : watchdog@7e100000

20101000-20102fff : cprman@7e101000

20104000-2010400f : rng@7e104000

20200000-202000b3 : gpio@7e200000

20201000-202011ff : serial@7e201000

20201000-202011ff : serial@7e201000

20202000-202020ff : mmc@7e202000

20204000-202041ff : spi@7e204000

20212000-20212007 : thermal@7e212000

20215000-20215007 : aux@7e215000

20980000-2098ffff : dwc_otg

Just for the GPIO with sudo cat /proc/iomem | grep gpio@ :

20200000-202000b3 : gpio@7e200000

20

E Developing with C/C++

To do more than just compile simple programs in C (or C++) on the Pi there are some stuff such that

are going to be useful to do just that. Here are my recommended list of packages to get with pacman :

• gcc / clang

• gdb

• cmake

• make

• perf

• patch

• automake

• autoconf

• autoconf-archive

• libtool

• pkg-config

• doxygen

• help2man

Linux header packages

If developing with the legacy GPIO linux header strikes your fancy then you will need to install the

following with pacman :

• linux-api-headers

• linux-raspberrypi-headers

The headers can then be found in: /lib/modules/${VERSION}/build/include/linux/

where ${VERSION} can be found with uname -r .

21

F C based GPIO libraries installation guides

F.1 libgpiod

Go find the latest snapshot of the library that still supports2 the 4.19 (32bit) kernel at the Linux kernel’s

libgpiod page and download it on the Pi.

Extract the archive: tar -xzf libgpiod-1.4.2.tar.gz

Note

The instructions coming up will install the library in the usual system paths for such things. If

you want it elsewhere, a --prefix=<target directory> must be added to the autogen.sh

options.

From the directory (cd libgpiod-1.4.2/) execute the following:

$./autogen.sh --enable-tools=yes --host=arm-linux-gnueabi

ac_cv_func_malloc_0_nonnull=yes

$ make

$ sudo make install

F.2 pigpio

Clone the repository with git:

$ git clone https://github.com/joan2937/pigpio.git

Navigate to the clone repository’s directory and compile/install the library:

$ cd pigpio

$ make

$ sudo make install

F.3 wiringpi

As long as it was installed during the ”3.1.2 Updating Arch” section alongwith the other extra programs

included there, it should already be available.

If not then just install it via the package manager:

$ sudo pacman -S wiringpi

2libgpiod v1.4.2 is the last version still supporting older 32bit kernels to date.

22

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/
https://github.com/joan2937/pigpio
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/snapshot/libgpiod-1.4.2.tar.gz

	Introduction
	Hardware
	System setup
	Arch Linux
	Installing Arch
	Updating Arch

	Getting the TFT panel to work
	Assigning the shutdown functionality to a TFT panel button
	sudo
	Users and Groups
	RSA credentials for SSH client login
	Permanent USB storage

	Git
	Basic Client-Server configuration
	Unifying remotes into 1 call

	Software
	Some button testing with python
	Button listener in Python using the sysfs ABI
	Other attempts and failures/problems encountered

	Sources and Further Reading
	Documentation
	Posts & Articles
	Code Repositories

	Appendices
	Conky configuration
	Adding SSH keys to Web-based repositories
	Github
	Bitbucket

	Python programs
	Button test program
	Button listener

	Memory mapping (RaspberryPi Model B v2.0)
	Developing with C/C++
	C based GPIO libraries installation guides
	libgpiod
	pigpio
	wiringpi

